Mechanical energy E = mgh + 1/2mv²
When he starts, let h = 0 ⇒ E₁ = 1/2mv₁²
When he reaches height h ⇒ E₂ = mgh + 1/2mv₂²
Without friction, energy is conserved at all times.
E₁ = E₂
↓
1/2mv₁² = mgh + 1/2mv₂²
↓
1/2v₁² = gh + 1/2v₂²
↓
gh = 1/2(v₁² - v₂²)
↓
h = (v₁² - v₂²) / (2g)
Answer:
Explanation:
Gamma-rays have the smallest wavelengths and the most energy of any other wave in the electromagnetic spectrum. Gamma-rays can kill living cells, a fact which medicine uses to its advantage, using gamma-rays to kill cancerous cells. Also, industry (sterilization and disinfection) and the nuclear industry.
Answer:
Conservation
Explanation:
She has observation conservation because If the temperature of the liquids stays constant and the container is insulated and not heat or cool the liquid much would not change the density of the liquid very much so that it's original volume could remain constant.
The interesting thing is not that the child assumes the taller glass holds more liquid but that they fail to understand conservation: the fact that the water from one glass is going to be the same amount after being poured into any other container. It's as if they did not realize the water came from the same glass.
The time taken by the ballast bag to reach the ground is 2.18 s
The ballast bag at rest with respect to the balloon has the upward velocity (u) of 4.6 m/s , which is the velocity of the balloon. When it is dropped from the balloon, its motion is similar to an object thrown upwards with an initial velocity <em>u </em>and it falls under the acceleration due to gravity<em> g.</em>
Taking the upward direction as positive and the downward direction as negative, the following equation of motion may be used.

The bag makes a net displacement <em>s</em> of 13.4 m downwards, hence

Its initial velocity is

The acceleration due to gravity acts downwards and hence it is negative.

Use the values in the equation of motion and write an equation for t.

Solving the equation for t and taking only the positive value for t,
t=2.18 s