Answer: Some can and can not kill you
Explanation:
Answer:
Since the area of the perfect square is 11650, and all of a squares sides ar equal, we just need to find the square root.
The square root of 11650 is 107.935166.
One side of the square is 107.935166
107.935166 x 107.935166 = 11650
(っ◔◡◔)っ ♥ Hope It Helps ♥
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.
Answer:
Time period for Simple pendulum, 
Explanation:
The Simple Pendulum
Consider a small bob of mass
is tied to extensible string of length
that is fixed to rigid support. The bob is oscillating in the plane about verticle.
Let
is the angle made by string with vertical during oscillation.
Vertical component of the force on bob,
Negative sign shows that its opposing the motion of bob.
Taking
as very small angle then, 
Let
is the displacement made by bob from its mean position ,
then, 
so,
........(1)
Since, pendulum is in hormonic motion,
as we know, 
where
is the constant and 
.........(2)
From equation (1) and (2)


Since, 


Answer:
The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s2.