C Weight is the gravitational pull on an object
My calculations state, not rounding, the mass is 1.8
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
Answer:
y = 80.2 mille
Explanation:
The minimum size of an object that can be seen is determined by the diffraction phenomenon, if we use the Rayleigh criterion that establishes that two objects can be distinguished without the maximum diffraction of a body coincides with the minimum of the other body, therefore so much for the pupil of the eye that it is a circular opening
θ = 1.22 λ/ d
in a normal eye the diameter of the pupils of d = 2 mm = 0.002 m, suppose the wavelength of maximum sensitivity of the eye λ = 550 nm = 550 10⁻⁹ m
θ = 1.22 550 10⁻⁹ / 0.002
θ = 3.355 10⁻⁴ rad
Let's use trigonometry to find the distance supported by this angle, the distance from the moon to the Earth is L = 238900 mille = 2.38900 10⁵ mi
tan θ = y / L
y = L tan θ
y = 2,389 10⁵ tan 3,355 10⁻⁴
y = 8.02 10¹ mi
y = 80.2 mille
This is the smallest size of an object seen directly by the eye
Answer:
The option is B is not true for Hubble telescope.