Group 17 is the most readily reduced elements on the periodic table, meaning that they are so close to being a stable elements, only missing 1 electron to complete their valance electron shell. Thus they will essentially react with anything to get that last electron!
Group 1 elements are extremely reactive because they are the most readily oxidized, they are very close to reaching stability by giving up only 1 electron. Thus they will react with almost anything to give up their electron.
Answer:
pKa = 3.675
Explanation:
∴ <em>C</em> X-281 = 0.079 M
∴ pH = 2.40
let X-281 a weak acid ( HA ):
∴ HA ↔ H+ + A-
⇒ Ka = [H+] * [A-] / [HA]
mass balance:
⇒<em> C</em> HA = 0.079 M = [HA] + [A-]
⇒ [HA] = 0.079 - [A-]
charge balance:
⇒ [H+] = [A-] + [OH-]... [OH-] is negligible; it comes from to water
⇒ [H+] = [A-]
∴ pH = - log [H+] = 2.40
⇒ [H+] = 3.981 E-3 M
replacing in Ka:
⇒ Ka = [H+]² / ( 0.079 - [H+] )
⇒ Ka = ( 3.981 E-3 )² / ( 0.079 - 3.981 E-3 )
⇒ Ka = 2.113 E-4
⇒ pKa = - Log ( 2.113 E-4 )
⇒ pKa = 3.675
Although a scientific theories will support and wildly excepted, what might cause of the change?
the answer would be A, New Evidence.
Answer:
The amount of energy required to break the ionic bonds in CaF2.
<span>The density of a material = mass/ volume
From the question, volume = 6 cm^3. Since the density = 8.9 g/cm^3
We have that 8.9 = mass/ 6
So mass = 8.9 * 6 = 53.4
So it follows that our mass = 53.4g. Hence option D which is 53g.</span>