Answer:
The temperature of the gas is 876.69 Kelvin
Explanation:
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P*V = n*R*T
where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas.
In this case:
- P= 470 mmHg
- V= 570 mL= 0.570 L
- n= 0.216 g= 0.0049 moles (being the molar mass of carbon dioxide is 44 g/mole)
- R= 62.36367

Replacing:
470 mmHg*0.570 L= 0.0049 moles* 62.36367
*T
Solving:

T= 876.69 K
<em><u>The temperature of the gas is 876.69 Kelvin</u></em>

The reaction creates dihydrogen, hence if it's uncontrolled it could lead to potentially dangerous amounts of gas being released at once.
It's not really possible to tell longitudinal vs. transverse in this image as given. However, we can say that the waves labeled A are high-frequency (short wavelengths) while the waves labeled B are low-frequency (long wavelengths). So, this third answer choice would be correct here.
First find the number of moles of sulfur using dimensional analysis with avogadro’s number as the conversion factor. 4.2*10^24 atoms * (1 mol/6.022*10^23 atoms) = 7.0 mol sulfur. The molar mass of sulfur is 32.06 g/mol, which is found on the periodic table as sulfur’s (S) atomic weight. Use dimensional analysis again with the molar mass of sulfur as the conversion factor. 7.0 mol * 32.06 g/mol = 224.42 g sulfur. Since the problems gives us two significant figures, round the mass of sulfur to 220 grams, or 2.2 * 10^2 g.
<span>A- solute is the answer you were looking for
</span>