Answer:
Percent error = 12.5%
Explanation:
In a measurement you can find percent error following the formula:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Based on the data of the problem, accepted value is 22.4L and the measured Value (Value of Sara) was 19.6L.
Replacing:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Percent error = |19.6L - 22.4L| / 22.4L * 100
Percent error = |-2.8L| / 22.4L * 100
Percent error = 2.8L / 22.4L * 100
Percent error = 12.5%
0.250 L*3M=0.250 L*3mol/L= 0.750 mol
Answer:
The chemical compounds of living things are known as organic compound because of their association with organisms and because they are carbon-containing compounds, which are the compounds associated with life processes, are the subject matter of organic chemistry
[H_{3}O^{+}] = 0.00770 M
The equilibrium equation representing the dissociation of 

Given [H_{3}O^{+}] = 0.00770 M
Let the initial concentration of acid be x and change y
So y =
=
= 0.00770 M



0.00257 x - 0.00001979 = 0.00005929
x = 0.031 M
Therefore, initial concentration of the weak acid is <u>0.031 M</u>
Using the law of <span>dilution:
</span>initial Molarity = 3.5x10⁻⁶ M
<span>Initial volume = 4.00 mL
</span>
final Molarity = ??
final volume = 1.00 mL
Therefore:
Mi x Vi = Mf x Vf
(3.5x10⁻⁶) x 4.00 = Mf x 1.00
1.4x10⁻⁵ = Mf x 1.00
Mf = 1.4x10⁻⁵ / 1.00 =
1.4x10⁻⁵ M