Answer:
2Fe(s) + 3O2(g) --------> 2FeO3(s)
Explanation:
According to the question, a battery was used to light the steel wool by bringing the terminals very close together. When the battery came into contact with the steel wool, current was sent out through the thin wire. This caused the iron to heat up quite well.
Iron reacts with oxygen under these conditions as follows;
2Fe(s) + 3O2(g) --------> 2FeO3(s)
This is the chemical reaction that occurs when the steel wool is set on fire.
Complete Question
A sample of aluminum, which has a specific heat capacity of 0.897 JB loc ! is put into a calorimeter (see sketch at right) that contains 200.0 g of water. The aluminum sample starts off at 85.6 °C and the temperature of the water starts off at 16.0 °C. When the temperature of the water stops changing it's 20.1 °C. The pressure remains constant at 1 atm. Calculate the mass of the aluminum sample.
Answer:

Explanation:
From the question we are told that:
Heat Capacity 
Mass of water 
Initial Temperature of Aluminium 
Initial Temperature of Water 
Final Temperature of Water 
Generally
Heat loss=Heat Gain
Therefore


Answer:
1.13 moles Au
Explanation:
Moles Au = 6.80x10²³atoms / 6.023x10²³atoms/mole = 1.13 moles Au
One is rows the other is columns
Answer:
I prob can bc I'm a bad b*tch
lol