The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
Explanation:
Do the step 3 as outlined in the lab guide. record your results in the appropriate blank.
D
Answer:
.✓is related to the solute content
✓gives information about potential changes in cell volume when cells are placed in that solution
√is related to membrane permeability to solutes.
Explanation:
Tonicity of a solution can be explained as how an extracellular solution can give room for the liquid to move in and out of the cell through osmosis.
It should be noted that Tonicity of a solution is
.✓is related to the solute content
✓gives information about potential
changes in cell volume when cells are placed in that solution
√is related to membrane permeability to solutes.
Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
Answer:
Temperature.
Explanation:
Temperature is a measure of the average kinetic energy of a system.