<h2>CNS </h2>
Explanation:
An example of a myelin producing cell in the CNS is oligodendrocyte
- The major function of oligodendrocytes is the formation of myelin
- Myelin acts as an insulator of axonal segments and is a prerequisite for the high velocity of nerve conduction
- Larger axons form thicker myelin
- During development, oligodendrocytes arise from precursors located in the sub-ventricular zone such as the sub-ventricular zone of the lateral ventricles for the cerebrum or the fourth ventricle for the cerebellum
- In the spinal cord, oligodendrocytes originate from the ventral regions of the neural tube and in the optic nerve they migrate into the nerve from the third ventricle
- It is the oligodendrocyte precursor cells which migrate to their destination where they then differentiate into the more mature oligodendrocytes
- The proliferation of the oligodendrocyte progenitor cells is controlled by a number of growth factors released predominantly from neurons but also from astrocytes such as platelet derived growth factor (PDGF) or fibroblast growth factor (FGF)
Answer:
The fix nitrogen into free nitrogen which is a usable form. They also bring nitrogen back into the system by decomposing dead organisms.
Answer 2.
Because, they are known as nitrogen fixing bacteria. These organisms convert nitrogen in the soil to ammonia, which can then be taken up by plants. After nitrogen has been fixed, other bacteria convert it into nitrate, in a process known as nitrification.
Both answer is correct choose the best choice for you.
Hope this helps!
The estimated expected (mean) time for project completion is 50 weeks, time management includes all the activities necessary to achieve the target date of delivery of the project. It includes the following activities: identification of activities, logical sequencing of activities, estimation of duration of activities, and preparation of the project schedule. For the preparation of the schedule we will see various methods such as resource leveling, simulation, and the critical chain method.
Answer:
Golgi receives a vesicle containing newly synthesized proteins that were sent by the endoplasmatic reticulum. Then it modifies the proteins and sends them where they need to go.
Explanation:
Protein synthesis is initiated in the cytoplasm when mRNA meets a free ribosome, which is the primary structure for protein synthesis. They read the mRNA code and add the correct amino acid using transference RNA to build the protein. The synthesizing protein is driven to the rough endoplasmic reticulum and translocated to the lumen. Once there, the protein suffers a few modifications, one of them is folding to become functional. Once membrane proteins are folded in the interior of the endoplasmic reticulum, they are <u>packaged into vesicles</u> and <u>sent to the Golgi complex</u>, where it occurs the <em>final association of carbohydrates with proteins</em>. The Golgi complex <u>sends proteins to their different destinies</u>. Proteins destined to a certain place are packaged all together in the same vesicle and sent to the target organ. In the case of membrane proteins, they are packaged in vesicles and sent to the cell membrane where they get incrusted.
Answer:
Decrease
Explanation:
If the foxes have nothing to eat, some will starve and die so the population will decrease.
Have a wonderful day!
PLEASE RATE!