Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
The range of the projectile is 188 m
Explanation:
The motion of the arrow in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
The path of a projectile is the combination of these two motions: see figure in attachment.
In order to find the horizontal range of the projectile, we just need to calculate the horizontal distance travelled.
We have:
t = 5.0 s (time of fligth of the projectile)
and the horizontal velocity is constant, and it is given by

where
is the initial velocity
is the angle of projection
Substituting,

And therefore, the range of the projectile is:

Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
a)
Weight in Air = 0.3N
Weight in Water = 0.25N
Weight in Liquid = 0.24N.
Upthrust /Buoyant Force = Weight in Air – Weight in Fluid(Water in this case)
= 0.3 – 0.25
= 0.5N.
b) R.D of Body = Density of Body/Density of Standard Fluid(Water).
There's a Derived Formula for RD.
I'm gonna Apply it here.
Ask me for the derivation in the Comment section if you need it.
RD = α/ρ = (Weight in Air) / (Upthrust Force)
Where
α = density of the Body(or reference substance)
ρ = density of standard fluid (water)
= 0.3/0.05 = 6.
c) RD of Liquid = (Density of Liquid) /(Density of standard Fluid(water)
Or we just go by that formula
RD of Liquid = Weight in Air/Upthrust(In Liquid)
We'll be using the Upthrust in that Liquid now.
= 0.3 – 0.24 = 0.06
RD = 0.3/0.06 = 5.
Short Answer- Friction
Explanation- There is friction between the grass and the ball. Friction is a type of force that limits motion between two surfaces that are touching. Friction is the force that one surface exerts on another with the two surfaces rubbing together.
This is the answer, hope it helps :)