Answer:
the signs of heat and work are; -Q and -W
Explanation:
The first law of thermodynamics is given by; ΔU = Q − W
where;
ΔU is the change in internal energy of a system,
Q is the net heat transfer (the sum of all heat transfer into and out of the system)
W is the net work done (the sum of all work done on or by the system).
Now, The system in this case is the tire and since the air gets warmer, heat must have left the system. Therefore Q is negative (-Q).
Since work is done by the system, W remains negative.
Thus, the signs of heat and work are; -Q and - W
To solve this problem we will apply the concepts related to the conservation of momentum. Momentum is defined as the product between mass and velocity of each body. And its conservation as the equality between the initial and final momentum. Mathematically described as

Here
= Mass of big fish
= Mass of small fish
= Velocity of big fish
= Velocity of small fish
= Final Velocity
The big fish eats small fish and the final velocity is zero. Rearrange the equation for the initial velocity of small fish we have


Replacing we have,


The negative sign indicates that the small fish is swimming in the direction opposite to that of the big fish.
Therefore the speed of the small fish is 10m/s
Answer:
$416 sounds like the best answer.
Explanation:
The tickets started off at $17, but a $4 discount for EACH ticket bought.
so 17-4 is 13
now tickets cost $13 each.
Multiply it by 32.
13x32=416
The equation for percent error is
% Error =

Our experimental is 2.85g/cm^3 and the accepted is 2.7g/cm^3
Thus our % Error = 5.555%
Answer:
Part a)

Part b)

So this speed is independent of the mass of the rider
Explanation:
Part a)
By force equation on the rider at the position of the hump we can say

now we will have


now we have



Part b)
At the top of the loop if the minimum speed is required so that it remains in contact so we will have

at minimum speed




So this speed is independent of the mass of the rider