1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
12

An electron traveling horizontally to the right enters a region where a uniform electric field is directed downward. What is the

direction of the electric force exerted on the electron once it has entered the electric field?
Physics
1 answer:
astraxan [27]3 years ago
8 0

Answer:

Upward

Explanation:

For charged particles immersed in an electric field:

- if the particle is positively charged, the direction of the force is the same as the direction of the electric field

- if the particle is negatively charged, the direction of the force is opposite to the direction of the electric field

In this problem, we have an electron - so a negatively charged particle - so the direction of the force is opposite to that of the electric field.

Since the electric field is directed downward, therefore, the electric force on the electron will be upward.

You might be interested in
Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at
andrew-mc [135]

Answer:

1. the electric potential energy of the electron when it is  at the midpoint is - 2.9 x 10^{-17} J

2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x  10^{-17} J

Explanation:

given information:

q_{1} =  3 nC = 3 x 10^{-9} C

q_{2} =  2 nC = 2 x 10^{-9} C

r = 50 cm = 0.5 m

the electric potential energy of the electron when it is  at the midpoint

potential energy of the charge, F

F = k \frac{q_{e}q}{r}

where

k = constant (8.99 x 10^{9} Nm^{2} /C^{2})

electron charge, q_{e} = - 1.6 x 10^{-19} C

since it is measured at the midpoint,

r = \frac{0.5}{2}

  = 0.25 m

thus,

F = F_{1}+ F_{2}

  = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = \frac{kq_{e} }{r} (q_{1} +q_{2})

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} +2 x 10^{-9})/0.25

  = - 2.9 x 10^{-17} J

the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge

r_{1} = 10 cm = 0.1 m

r_{2} = 0.5 - 0.1 = 0.4 m

F = k\frac{q_{e} q_{1} }{r} + k\frac{q_{e} q_{2} }{r}

  = kq_{e}(\frac{q_{1} }{r_{1} }+\frac{q_{2} }{r_{2} })

  = (8.99 x 10^{9})( - 1.6 x 10^{-19} )(3 x 10^{-9} /0.1+2 x 10^{-9}/0.4)

  = - 5.04 x  10^{-17} J

3 0
2 years ago
When did humans learn that the earth is not the center of the universe?
Vinvika [58]

Answer:

When did humans learn that the Earth is not the center of the universe?

Answer

1

Follow

Request

More

Ad by Odoo

Odoo: The open-source CRM!

Keep track of leads and opportunities, personalize sales cycles, and control forecasts with Odoo CRM!

Learn More

4 Answers

Asked in 3 Spaces





Science - Next Generation

Alexander Somm

, Consultant, Investor Relations at Novelpharm AG (2015-present)

Answered Oct 16

What, it isn’t?!

Sorry, I had to.

As far as I have read and understood, the Sumerians and later the Babylonians both had astronomical calendars that already differentiated planets and stars. Earth was not the center to them, the Sun likely was. That was around 2,200 - 1,600 BC.

After that, Greek philosopher Aristarchus of Samos (310 - 230 BC) was the first (recorded) to have believed the solar system was organized around the Sun, rather than the Earth. His heliocentric model was unpopular during Aristarchus’ lifetime, although it would inspire astronomers centuries later, such as Copernicus and Galileo.

Now, there are numerous archeological findings (cave paintings) and studies, that all suggest an understanding of complex astronomy in prehistoric times dating back as far as 40,000 years. This also explains how early, prehistoric migrants may have navigated the seas.

Explanation:

hope it helps

have a good day

4 0
2 years ago
What is the mass of a man who accelerates 4 m/s2 under the action of a 200 N net force?
Over [174]

Answer:

\huge  \boxed{ \boxed{50 \:   kg }}

Explanation:

The mass of the man can be found by using the formula

m =  \frac{f}{a}  \\

f is the force

a is the acceleration

From the question we have

m =  \frac{200}{4}  \\

We have the final answer as

<h3>50 kg</h3>

Hope this helps you

7 0
2 years ago
Which is measured by the power of a machine?
Alina [70]

the rate of work done or doing work is usually measured by the power of a machine .

7 0
3 years ago
What is not changed when work is done by a machine?
Irina18 [472]
B) The amount of work done
8 0
3 years ago
Read 2 more answers
Other questions:
  • A hot air ballo0n is ascending straight up at a constant
    15·1 answer
  • Which wave has a disturbance that is parallel to the wave motion?
    12·2 answers
  • Elaborate on the reason that "cola" type drinks are used to make effective marinades.
    13·2 answers
  • The car's motion can be divided into three different stages: its motion before the driver realizes he's late, its motion after t
    12·1 answer
  • What force is required to push a block (mass m) up an inclined plane that makes an angle of θ with the horizon at a constant vel
    6·1 answer
  • What’s the difference between 40hz and 300hz
    12·1 answer
  • What does HIPAA and FERPA stand for?
    15·2 answers
  • Ms. Reitman's scooter starts from rest and the final velocity is
    9·1 answer
  • ILL GIVE BRAINLIEST. plsss help asap
    13·1 answer
  • Why did the chicken cross the road
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!