Answer:
CuSO4
Explanation:
Na2S + CuSO4 → Na2SO4 + CuS
The reaction is balanced (same number of elements in each side)
To determine limiting reagent you need to know the moles you have of each.
Molar mass Na2S = 23 * 2 + 32 = 78
Molar mass CuSO4 = 63.5 + 32 + 16 * 4 = 159.5
Na2S mole = 15.5 / 78 = 0.2
CuSO4 mole = 12.1/159.5 = 0.076
*Remember mole = mass / MM
With that information now you have to divide each moles by its respective stoichiometric coefficient
Na2S stoichiometric coefficient : 1
Na2S : 0.2 / 1 = 0.2
CuSO4 stoichiometric coefficient: 1
CuSO4: 0.076 / 1 = 0.076
The smaller number between them its the limiting reagent, CuSO4
Answer:
1= 2H₂ + O₂ → 2H₂O
2=CaCo₃ + heat → CaO +CO₂
3=CH₄ + 2O₂ → CO₂ +2H₂O
4=HCl + NaOH → NaCl + H₂O
Explanation:
1 = Simple composition
The formation of water molecule is simple composition reaction. In this reaction two hydrogen atoms react with one oxygen atom and form one water molecules.
2H₂ + O₂ → 2H₂O
The amount of energy released is -285.83 KJ/mol. It is exothermic reaction.
2 = Simple decomposition reaction:
The break down of sodium hydrogen carbonate into sodium carbonate, carbondioxide and water is decomposition reaction. The decomposition reactions re mostly endothermic, because compound required energy to break.
2NaHCO₃ + heat → Na₂CO₃ + H₂O + CO₂
It is endothermic reaction.
Another example is:
CaCo₃ + heat → CaO +CO₂
3 = Combustion reaction
Consider the combustion of methane:
CH₄ + 2O₂ → CO₂ +2H₂O
The burning of methane is exothermic. The combustion reactions are exothermic because when fuel are burns they gives energy.
4 = Neutralization reaction
The neutralization reactions are those in which acid and base react to form the salt and the water. Some neutralization reactions are exothermic because they release heat. e.g
Consider the neutralization reaction of HCl and NaOH.
HCl + NaOH → NaCl + H₂O
26g --- 1 mol
56g --- X
X= 56/26 = 2,154 mol
959 ml = 959cm³ = 0,959dm³
C = n/V
C = 2,154/0,959
C = 2,246 mol/dm³
Answer : The correct option is, (3) Oxidation occurs at the anode and reduction occurs at the cathode.
Explanation :
Electrochemical cell : It is a type of device which is used to convert the chemical energy into electrical energy during the redox reaction.
In the electrochemical cell, there are two electrodes. The electrode on which the oxidation takes place is called the anode (or negative pole) and the electrode on which the reduction takes place is called the cathode (or positive pole). This cell is connected by the salt bridge.
In the external circuit, the electrons flow from the anode (negative pole) to cathode (positive pole) through the voltmeter.
In the inner circuit, the ions flow through the salt bridge.
Hence, the correct option is, (3) Oxidation occurs at the anode and reduction occurs at the cathode.