Answer:
67.4 % of C₉H₈O₄
Explanation:
To make titrations problems we know, that in the endpoint:
mmoles of acid = mmoles of base
mmoles = M . volume so:
mmoles of acid = 20.52 mL . 0.1121 M
mmoles of acid = mg of acid / PM (mg /mmoles)
Let's determine the PM of aspirin:
12.017 g/m . 9 + 1.00078 g/m . 8 + 15.9994 g/m . 4 = 180.1568 mg/mmol
mass (mg) = (20.52 mL . 0.1121 M) . 180.1568 mg/mmol
mass (mg) = 414.4 mg
We convert the mass to g → 414.4 mg . 1g / 1000mg = 0.4144 g
We determine the % → (0.4144 g / 0.615 g) . 100 = 67.4 %
The information given in the question is not enough to determine the acidity of the solution. This is because, acidity can only be found with the equation: pH = -log [H+].
In order to determine the acidity of the solution, the half titration point value is needed, this will make it possible to determine the value of H30+. If the half point titration value is known, then Ka will be equivalent to pH and the value will be evaluated using the equation: - log (1.6 * 10^-10).
Photosynthesis is the process by which plants create their food. It involves the operation of enzymes in the plant cells , and they work best at certainpH levels. ... Thus, as the plant's pH drifts away from the best pH, the rate of photosynthesis will decrease.
Answer:
Explanation:
There is a formula for this:
M = DRT/P where M = molar mass. This just derived from PV = nRT where you say n = grams/molar mass. However, just with this formula, we can get D which is density at STP (1 atm and 273K). We find that D = 6.52g/L.