I’m deciding between E or D.. because for E it’s saying it’s changing ocean currents, but I’m thinking does that mean the earths precipitation or their climate. Best go with E, hope this helps
A) A concave mirror forming a larger, virtual image
Explanation:
The figure is missing; see attachment.
There are two types of mirror:
- Concave (converging) mirrors: a concave mirror is a mirror that reflects the light inward
- Convex (diverging) mirrors: a convex mirror is a mirror that reflects the light outward
The image formed by a mirror can also be of two types:
- Real image: it is formed on the same side of the object, with respect to the mirror
- Virtual image: it is formed on the opposite side of the object, with respect to the mirror
In the figure of this problem (see attachment), we see that:
- The mirror reflects the light from the object inward --> so it is a concave mirror
- The image is formed on the other side of the mirror --> it is a virtual image
So the correct option is
A) A concave mirror forming a larger, virtual image
Learn more about mirrors:
brainly.com/question/8737441
#LearnwithBrainly
Answer:
The acceleration due to gravity is
times the value of g at the Earth’s surface.
(D) is correct option.
Explanation:
Given that,
Radius = 4000 miles
We need to calculate the gravitational force at surface
Gravitational force on the mass m on the surface of the earth
At r = R

....(I)
We need to calculate the gravitational force at height
Gravitational force on a mass m from the center of the earth,
At r = R + R = 2 R

....(II)
Dividing equation (II) by equation (I)


Hence, The acceleration due to gravity is
times the value of g at the Earth’s surface.
Answer:

Explanation:
It is given that, a proton moves at constant velocity, through a region in which there is an electric field and a magnetic field such that,
The electric field is, E = 800 V/m
Magnetic field, B = 0.25 T
We know that the net force in the region of magnetic and electric field is given by Lorentz forces. But here, the proton moves with constant velocity. So, the net force acting on it is 0.
i.e.

Hence, this is the required solution.