Answer:
1. A1, B2, C3
2. 47.1°
Explanation:
Sum of forces in the x direction:
∑Fₓ = ma
f − Fᵥᵥ = 0
f = Fᵥᵥ
Sum of forces in the y direction:
∑Fᵧ = ma
N − W = 0
N = W
Sum of moments about the base of the ladder:
∑τ = Iα
Fᵥᵥ h − W (b/2) = 0
Fᵥᵥ h = ½ W b
Fᵥᵥ (l sin θ) = ½ W (l cos θ)
l Fᵥᵥ sin θ = ½ l W cos θ
The correct set of equations is A1, B2, C3.
At the smallest angle θ, f = Nμ. Substituting into the first equation, we get:
Nμ = Fᵥᵥ
Substituting the second equation into this equation, we get:
Wμ = Fᵥᵥ
Substituting this into the third equation, we get:
l (Wμ) sin θ = ½ l W cos θ
μ sin θ = ½ cos θ
tan θ = 1 / (2μ)
θ = atan(1 / (2μ))
θ = atan(1 / (2 × 0.464))
θ ≈ 47.1°
Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
Answer:
Hello There!!
Explanation:
Electrons get their energy by absorbing light.
hope this helps,have a great day!!
~Pinky~
Answer:
work output is always less than work input - the ratio is less than 1.
Explanation:
This principle comes from the fact that a machine or system cannot produce more work than is supplied to it, because this would violate the energy conservation law (work is a type of mechanical energy).
In theoretical machines called "ideal machines" the input work is the same as the output work, but these machines are only theoretical because in real applications there is always some type of energy loss, either in heat produced by a machine or processes for its operation, for this reason the output work is always less than the input work.
Regarding the ratio work output to work input:

because work input WI is always greater than work output WO.