1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
3 years ago
14

A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with ne

arly the same speed with which it hit. The clay sticks to the wall. Which one of these objects experiences the greater momentum change?
Physics
1 answer:
gregori [183]3 years ago
3 0

Answer:

The ball experiences the greater momentum change

Explanation:

The momentum change of each object is given by:

\Delta p = m \Delta v= m (v-u)

where

m is the mass of the object

v is the final velocity

u is the initial velocity

Both objects have same mass m and same initial velocity u. So we have:

- For the ball, the final velocity is

v=-u

Since it bounces back (so, opposite direction --> negative sign) with same speed (so, the magnitude of the final velocity is still u). So the change in momentum is

\Delta p=m(v-u)=m((-u)-u)=-2mu

- For the clay, the final velocity is

v=0

since it sticks to the wall. So, the change in momentum is

\Delta p = m(v-u)=m(0-u)=-mu

So we see that the greater momentum change (in magnitude) is experienced by the ball.

You might be interested in
How do you find the speed of an object given its mass and kinetic energy (what is the formula)?
madam [21]
   v  =   √ { 2*(KE) ] / m } ; 

Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"] ; 
        
and solve for "v".

______________________________________________________
Explanation:
_____________________________________________________
The formula is:  KE = (½) * (m) * (v²) ;
_____________________________________
  
"Kinetic energy" = (½) * (mass) * (velocity , "squared")
________________________________________________
Note:  Velocity is similar to speed, in that velocity means "speed and direction";  however, if you "square" a negative number, you will get a "positive"; since:  a "negative" multiplied by a "negative" equals a "positive".
____________________________________________
So, we have the formula:
___________________________________
KE = (½) * (m) * (v²) ;  to solve for "(v)" ; velocity, which is very similar to                                          the "speed"; 
___________________________________________________
we arrange the formula ;
__________________________________________________
(KE) = (½) * (m) * (v²) ;  ↔  (½)*(m)* (v²) = (KE) ; 
___________________________________________________

→ We have:  (½)*(m)* (v²) = (KE)  ; we isolate, "m" (mass) on one side of the equation:
______________________________________________________
   
→ We divide each side of the equation by: "[(½)* (m)]" ; 
___________________________________________________
    
           →   [ (½)*(m)*(v²) ] /  [(½)* (m)]  = (KE) / [(½)* (m)]<span> ;
</span>______________________________________________________
 to get: 
______________________________________________________
                           →   v²     =   (KE) / [(½)* (m)]
                     
                           →   v²     = 2 KE / m
_______________________________________________________
Take the "square root" of each side of the equation ;
_______________________________________________________
                          →  √ (v²)  =  √ { 2*(KE) ] / m }
________________________________________________________

                          →     v  =   √ { 2*(KE) ] / m } ; 

Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"]; 
       
and solve for "v".

______________________________________________________
8 0
3 years ago
Find the speed of a long distance runner who runs 30km in 6 hours
slava [35]

30mi/6hrs is a speed of 5 mph, which converts to a pace of 12 min/mi.

7 0
3 years ago
Read 2 more answers
The principle of work states that the ratio of work output to work input is always
snow_lady [41]

Answer:

work output is always less than work input - the ratio is less than 1.

Explanation:

This principle comes from the fact that a machine or system cannot produce more work than is supplied to it, because this would violate the energy conservation law (work is a type of mechanical energy).

In theoretical machines called "ideal machines" the input work is the same as the output work, but these machines are only theoretical because in real applications there is always some type of energy loss, either in heat produced by a machine or processes for its operation, for this reason the output work is always less than the input work.

Regarding the ratio work output to work input:

\frac{WO}{WI} < 1

because work input WI is always greater than work output WO.

7 0
4 years ago
Researchers at the University of Georgia have evaluated trends in streamside forests in areas within roughly 400 feet of the sta
Colt1911 [192]
<span>B: adds aesthetic value to the landscape. Think about it, out of all your options, that's the one that doesn't really help anything.

And I took the test, so take my word for it.</span>
6 0
3 years ago
What type of tectonic plate boundary exists along the edge of the North American plate near the coast of Northern California, Or
kobusy [5.1K]

Answer:

-transform plate boundary

- false

4 0
3 years ago
Other questions:
  • Two charges valued 1 c and 2 c are sitting 200 centimeters apart from one another find the force exerted on the charges by one a
    8·1 answer
  • Sound waves are mechanical waves in which the particles in the medium vibrate in a direction parallel to the direction of energy
    9·1 answer
  • Which of the following is true of all minerals?
    13·2 answers
  • When using a cell phone, a(n) ________ converter chip changes your voice's sound waves into digital signals.
    10·1 answer
  • hree identical resistors are connected in series. When a certain potential difference is applied across the combination, the tot
    14·1 answer
  • the weatherman reports the storm waves are about 2 meters high and 35 meters apart. What properties of waves is the reporter des
    6·1 answer
  • Plz answer fast the question
    8·1 answer
  • Plz help I will give brainly to the correct answer
    12·1 answer
  • Please help me with this i need your help
    15·1 answer
  • A baseball pitcher throws a fastball with a 100 ns impulse. if he applied the force in 0. 15 seconds, what force did he apply?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!