Answer:
54 I think
Step-by-step explanation:
I just did 15 divided by 9 and got 5/3 and then did 90 divided by 5/3 and got 54
the center is at the origin of a coordinate system and the foci are on the y-axis, then the foci are symmetric about the origin.
The hyperbola focus F1 is 46 feet above the vertex of the parabola and the hyperbola focus F2 is 6 ft above the parabola's vertex. Then the distance F1F2 is 46-6=40 ft.
In terms of hyperbola, F1F2=2c, c=20.
The vertex of the hyperba is 2 ft below focus F1, then in terms of hyperbola c-a=2 and a=c-2=18 ft.
Use formula c^2=a^2+b^2c
2
=a
2
+b
2
to find b:
\begin{gathered} (20)^2=(18)^2+b^2,\\ b^2=400-324=76 \end{gathered}
(20)
2
=(18)
2
+b
2
,
b
2
=400−324=76
.
The branches of hyperbola go in y-direction, so the equation of hyperbola is
\dfrac{y^2}{b^2}- \dfrac{x^2}{a^2}=1
b
2
y
2
−
a
2
x
2
=1 .
Substitute a and b:
\dfrac{y^2}{76}- \dfrac{x^2}{324}=1
76
y
2
−
324
x
2
=1 .
Answer:
Step-by-step explanation:
Cos^-1(1/2) = 60
To get from a degree to radian, simply multiply by pi then divide by 180. So the final answer is 1/3pi or approximately 1.0472
I hope this helped! :D
Answer:
x=10
Step-by-step explanation:
Lets use a ratio.
3:2 (12 to 8)
We need to scale the x+4 up 3/2 to be equal to 2x+1
(3/2) x+4 = 2x+1
1.5x+6=2x+1
-1.5x -1.5x
6=0.5x+1
-1 -1
0.5x=5
x=10