Answer: See explanation
Explanation:
The evolutionary stages for the formation of planets from earliest to latest will be:
1. Dust keeps matter inside the disk cool enough for planet formation to start
2. Dust grains form condensation nuclei on which surrounding atoms condense to form small clumps of matter.
3. Small clumps of matter stick together via the process of accretion to form planetesimals a few hundred kilometers in diameter.
4. Planetesimals begin to accrete, forming protoplanets.
5. A collection of a few planet-sized protoplanets remain in a fairly cleared out disk around the star
Answer:
It does both. Once they get close enough the air does start to get charged, but then they eventually discharge when they touch.
Explanation:
In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
The frequency of the oscillation in hertz is calculated to be 0.00031 Hz.
The frequency of a wave is defined as the number of cycles completed per second while the period refers to the time taken to complete a cycle. The frequency is the inverse of period.
So;
Period(T) = 54 minutes or 3240 seconds
Frequency (f) = T-1 = 1/T = 1/3240 seconds = 0.00031 Hz
Learn more: brainly.com/question/14588679
Answer:
a) 1.73*10^5 J
b) 3645 N
Explanation:
106 km/h = 106 * 1000/3600 = 29.4 m/s
If KE = PE, then
mgh = 1/2mv²
gh = 1/2v²
h = v²/2g
h = 29.4² / 2 * 9.81
h = 864.36 / 19.62
h = 44.06 m
Loss of energy = mgΔh
E = 780 * 9.81 * (44.06 - 21.5)
E = 7651.8 * 22.56
E = 172624.6 J
Thus, the amount if energy lost is 1.73*10^5 J
Work done = Force * distance
Force = work done / distance
Force = 172624.6 / (21.5/sin27°)
Force = 172624.6 / 47.36
Force = 3645 N