Speed = Distance/ Time
Speed = 400 / 4
Speed = 100 km/hr.
100 km per hour.
The frequency of the human ear canal is 2.92 kHz.
Explanation:
As the ear canal is like a tube with open at one end, the wavelength of sound passing through this tube will propagate 4 times its length of the tube. So wavelength of the sound wave will be equal to four times the length of the tube. Then the frequency can be easily determined by finding the ratio of velocity of sound to wavelength. As the velocity of sound is given as 339 m/s, then the wavelength of the sound wave propagating through the ear canal is
Wavelength=4*Length of the ear canal
As length of the ear canal is given as 2.9 cm, it should be converted into meter as follows:

Then the frequency is determined as
f=c/λ=339/0.116=2922 Hz=2.92 kHz.
So, the frequency of the human ear canal is 2.92 kHz.
Explanation:
Given that,
The mean kinetic energy of the emitted electron, 
(a) The relation between the kinetic energy and the De Broglie wavelength is given by :



(b) According to Bragg's law,

n = 1
For nickel, 



As the angle made is very small, so such an electron is not useful in a Davisson-Germer type scattering experiment.
Answer:
The speed stays constant after the force stops pushing.
Explanation:
Speed always stays constant when the force stops pushing it.