Answer:
5√2
Step-by-step explanation:
√8 + √18
We first have to find what is the largest perfect square that goes into √8:
4 is the largest, so therefore → √8 gives you 2√2:
Work: √4 * √2 → 2 * √2 → 2√2
Now we have to find what is the largest perfect square that goes into √18:
9 is the largest, so therefore → √18 gives you 3√2:
Work: √9 * √2 → 3 * √2 → 3√2
Because 2√2 and 3√2 have the same "base" of √2, they can be added together:
2√2 + 3√2 = 5√2 (The "bases" are to be left alone!)
Answer:
64
Step-by-step explanation:
just count the blocks!
Answer: 
Step-by-step explanation:
Here the total numbers are 1, 4, 3, 7, 6
Since the total number of possible arrangement =
The total number of the odd numbers in the given numbers = 3
Thus the possible arrangement that the first three digits will be odd numbers = 
Thus, the probability that the first three digits of Irvings ID number will be odd numbers = the possible arrangement that the first three digits will be odd numbers / total possible arrangement =
= 
54 is th answer because ther is 6 units on one side and 9 units in the other and when you times you get this I think