Let c > 0. Then split the integral at t = c to write

By the FTC, the derivative is
![\displaystyle \frac{df}{dx} = \left(\frac1x + \sin\left(\frac1x\right)\right) \frac{d}{dx}\left[\frac1x\right] - (\ln(x) + \sin(\ln(x))) \frac{d}{dx}\left[\ln(x)\right] \\\\ = -\frac1{x^2} \left(\frac1x + \sin\left(\frac1x\right)\right) - \frac1x (\ln(x) + \sin(\ln(x))) \\\\ = -\frac1{x^3} - \frac{\sin\left(\frac1x\right)}{x^2} - \frac{\ln(x)}x - \frac{\sin(\ln(x))}x \\\\ = -\frac{1 + x\sin\left(\frac1x\right) + x^2\ln(x) + x^2 \sin(\ln(x))}{x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdf%7D%7Bdx%7D%20%3D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cfrac1x%5Cright%5D%20-%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cln%28x%29%5Cright%5D%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E2%7D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20-%20%5Cfrac1x%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E3%7D%20-%20%5Cfrac%7B%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%7D%7Bx%5E2%7D%20-%20%5Cfrac%7B%5Cln%28x%29%7Dx%20-%20%5Cfrac%7B%5Csin%28%5Cln%28x%29%29%7Dx%20%5C%5C%5C%5C%20%3D%20-%5Cfrac%7B1%20%2B%20x%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%20%2B%20x%5E2%5Cln%28x%29%20%2B%20x%5E2%20%5Csin%28%5Cln%28x%29%29%7D%7Bx%5E3%7D)
<u>Answer:</u>

<u>Explanation:</u>
Before we begin, remember that:
(
)ⁿ = 
This means that power is distributed in case of division
The given is:

Applying the above rule, we would get:
= 
Hope this helps :)
Answer:
oof
Step-by-step explanation:
Answer:
Triangle C
Step-by-step explanation:
Triangle C contains a 90° angle.
Answer: (b) Provide hints on what the teacher thinks is important
Explanation: Clearly, the teacher selects what to ask in the tests, and it is plausible to think that (s)he will select problems that they deem important.
The teacher will know that students look at past tests, and so they will tend to change the wording and values in the tests to prevent plagiarism, so (a) is not the right choice.