Answer:
option B...
they represent different concept...
i hope this will answer your question
Accuracy?
filler text filler text filler text
Given the value of the mass of each boxes, the work done in lifting the boxes to the given height is 1.6 × 10⁵J.
<h3>
Work done</h3>
Work done is simply defined as the energy transfer that takes place when an object is either pushed or pulled over a certain distance by an external force. It is expressed as;
W = F × d
Where F is force applied or Weight and d is distance
Also Force = Weight = mass × acceleration due to gravity.
Since gravity is acting on the boxes as it been lift
W = Weight × height from ground level
W = mg × d
Where m is mass of the boxes, g is accelration due to gravity( g = 9.8m/s² ) and d is distance from ground level.
Given the data in the question;
- Since each box has a mass of 7.89 kg
- Mass of the 345 boxes = 345 × 7.89 kg = 2722.05kg
- Distance or height d = 6.0m
To determine the work done, we substitute our values into the expression above.
W = mg × d
W = 2722.05kg × 9.8m/s² × 6.0m
W = 160056.5kgm²/s²
W = 160056.5J
W = 1.6 × 10⁵J
Therefore, Given the value of the mass of each boxes, the work done in lifting the boxes to the given height is 1.6 × 10⁵J.
Learn more about work done here: brainly.com/question/26115962
Answer:
P = VI = (IR)I = I2R
Explanation:
What the equation means is that if you double the current you end up with 4 times the power loss. It's like the area of carpet you need for a room - if you make the room twice as long and twice as wide you need 4x as much carpet. The physical explanation is that the voltage difference along a wire depends on the current - more current flowing with a resistance means more voltage (pressure of electricity if you like) is built up.
This extra voltage means more power. So if you double the current your would double the power, but you also double the voltage which doubles the power again = 4x as much power. P = VI = (IR)I = I2R
I hope this helps you out, if I'm wrong, just tell me.
Answer:

Explanation:
We are given that
Diameter=d=
Thickness=
Radius=
Using 
Dielectric constant=8
Resistance =
Internal specific resistance=r=100 ohm cm=
Using 1 m=100 cm
Internal resistance per unit length=
Using 
Internal resistance per unit length=