Answer:
Lithium
Explanation:
The equation for the photoelectric effect is

where
is the energy of the incident photon, with
h being the Planck constant
c is the speed of light
is the wavelength of the photon
is the work function of the metal (the minimum energy needed to extract the photoelectron from the metal)
is the maximum kinetic energy of the emitted photoelectrons
In this problem, we have
is the wavelength of the incident photon
is the maximum kinetic energy of the electrons
First of all we can find the energy of the incident photon

Converting into electronvolts,

So now we can re-arrange the equation of the photoelectric effect to find the work function of the metal

So the metal is most likely Lithium, which has a work function of 2.5 eV.
<span>The purpose of pumping is to increase overall velocity. The person drops down into a crouch while traversing the more-or-less flat bottom of the U-shaped pipe or bowl. Then, as he enters the sloped part of the ramp or bowl, called the transition, he straightens his legs and rises up. By raising his center of mass just at the beginning of the arc, the person gains energy and thereby increases his speed.</span>
Distance = (1/2) (acceleration) (time)²
1.4m = (0.835 m/s²) (time)²
(time)² = (1.4/0.835) s²
<em>time = 1.295 s</em>
<span>Nothing happens to the pitch of a cell phone ring when the amplitude
of a sound wave increases.
Pitch and amplitude are both characteristics of a wave, but they're not
connected, and they don't influence each other.</span>
Find refractive index first



Now





