Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:
- radius of the hill:
Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car
(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,
, so we can write:
(1)
By rearranging the equation and substituting the numbers, we find N:
(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:
(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:
from which we find
Force-a push or pull exerted on an object.
Describe that a scientific law is a description of a specific relationship under given conditions. Describe that scientific laws are developed from large amounts of experimental observations that result in the same outcome.