If you can observe, we are only given one parameter here which is the time. If you want to compute for the distance, you have to know the speed. The hint here is the 'radio transmissions'. All the information gathered by the probe from the space, is sent back to the Earth by electromagnetic waves. Hence, we must know the speed of electromagnetic waves. Since they are as fast as light, their speed is equal to 300 million meters per second. Then, we can finally determine the distance.
d = speed*time
d = (300×10⁶ m/s)(2.53 hours)
Since 1 hour = 3,600 seconds,
d = (300×10⁶ m/s)(2.53 hours)(3,600 seconds/1 hour)
d = 2.73×10⁻¹² m
I'm not sure about the distance to the nearest star, but it's probably about 4 light-years (L-y).
1 L-y = 1.86 * 10E5 mi/sec * 3600 sec/hr * 24 hr/day * 365 day/yr
1 L-y = 5.9 *10E12 mi and 4 L-y = 2.3 *10E13 mi distance to star
2.3 * 10E13 mi / 900 mi/hr = 2.6 * 10E10 hr hours to star
2.6 * 10E10 hr / (24 hr/day) = 1.1 * 10E9 day days to star
1.1 * 10E9 day / 365 day/yr = 3 * 10E6 yr = 3 million years to star
Answer:
1.moon
2.Earth is the first planet with a satellite, or moon.
3.Mars, the fourth planet out, has two moons, but they are probably just a couple of big old rocks.
5.The incoming object was destroyed on impact, reduced to vapor, dust, and chunks. Large surviving parts were driven deep into the interior of Earth. A signicant portion of Earth was destroyed as well. The energy that resulted from the crash produced an explosion of unimaginable magnitude.
Explanation:
i did what i can
Photosynthesis is a good one you can really explain with pictures