Solids are the best at conducting heat.
1). The little projectile is affected by friction all the way through the block.
Friction robs some kinetic energy.
2). The block is affected by friction as it scrapes along the top of the post.
Friction robs some kinetic energy.
3). The block is also affected by friction with the air (air resistance) as it
falls to the ground. Friction robs some kinetic energy.
Answer: 1339.5 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 67kg
g = 9.8m/s^2
h = 2.04 metres
Thus, GPE = 67kg x 9.8m/s^2 x 2.04m
GPE = 1339.5 joules
Thus, the gravitational potential energy at the highest point is 1339.5 joules
a) An inflated balloon was pressed against a wall after it has been rubbed with a piece of synthetic cloth. It was found that the balloon sticks to the wall. <u>This is because a positive and negative electric charge is produced, therefore the balloon sticks to the wall.</u>
b) When an object is thrown up, it comes back to ground <u>because of gravitational attraction force of earth</u>.
c) Mountaineers suffer nose bleeding at higher altitudes <u>because the oxygen level decreases with increase in altitude, which the body cannot adjust.</u>
d) Foundations of high rise buildings are kept wide <u>because more is the area of contact, less is the pressure efforts. So, foundations are wide so as to decrease the possibility of the building from falling down.</u>
e) Deep sea divers or high altitude fliers wear special suits <u>so as prevent their body from being crushed by the water pressure. Since water pressure is maximum at deep seas and oceans, therefore, more is the risk of being injured.</u>
f) Walls of a dam are thickened near the base <u>so that the dam can handle the kinetic energy pressure and prevent itself from breaking down, which if not, can lead to flooding</u>.
HOPE IT HELPS...
Answer:
D
Explanation:
The greater the mass, the greater the inertia, and vice versa.
Remark: This means that a more massive object has a greater tendency to resist a change in its state of rest or motion.