Answer:
4 m/s
Explanation:
Momentum is conserved.
m₁ v₁ + m₂ v₂ = (m₁ + m₂) v
(50)(5) + (20)(1.5) = (50 + 20) v
v = 4
The final velocity is 4 m/s.
Answer:The deltoid is a muscle in the shoulder It has the shape of a hollow semi-cone
Explanation:
Formula:
F = ma
F: force (N) m: mass (kg) a: acceleration (m/s^2)
Solution:
F = ma
F = 20 × 10
= 200N
Answer:
See Below
Explanation:
Okay, I thinkkk what it is asking by what you summarzied for me issss:
They split the total time into four quarters. They then took (for the first quarter) the start time. Then when the first quarter ends and the second quarter starts is the "end" time.
They then subtract the start time of the second quarter from the end time of the first quarter.
I hope this helps, good luck! :D
Kepler noticed an imaginary line drawn from a planet to the Sun and this line swept out an equal area of space in equal times, If we then draw a triangle out from the Sun to a planet’s position at one point in time, it is notice that the area doesn't change even after the planet has left the original position say like after 2 to 3days or 2hours. So to have same area of triangle means that the the planet move faster when that are closer to the sun and slowly when they are far from the sun.
This led to Kepler's law of orbital motion.
First Law: Planetary orbits are elliptical with the sun at a focus.
Second Law: The radius vector from the sun to a planet sweeps equal areas in equal times.
Third Law: The ratio of the square of the period of revolution and the cube of the ellipse semi-major axis is the same for all planets.
It is this Kepler's law that makes Newton to come up with his own laws on how planet moves the way they do.