Answer:
1.5min
Explanation:
To solve the problem it is necessary to take into account the concepts related to Period and Centripetal Acceleration.
By definition centripetal acceleration is given by

Where,
V = Tangencial velocity
r = radius
With our values we know that


Therefore solving to find V, we have:



For definition we know that the Time to complete are revolution is given by




Answer:
If we use the equation for the transformation of velocities for moving frames:
v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'
v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)
or v' = 1.2 c / (1 + .36) = .88 c
v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u (-.6 c) and we measure the speed of v as seen in the frame moving to the left
The acceleration of the bus is 1.11 meters per second square to the direction of motion
Explanation:
Acceleration is the rate of change of velocity
The formula of the acceleration is
, where
is the initial velocity
is the final velocity- t is the time
A bus that goes from 10 km/h to a speed of 50 km/h in 10 seconds
→
= 10 km/h
→
= 50 km/h
→ t = 10 seconds
Change the unite of the time from seconds to hour
→ 1 hour = 60 × 60 = 3600 seconds
→ 10 seconds =
hour
Substitute these values in the formula of the acceleration above
→ 
→ a = 14400 km/h²
To change the unit of acceleration to meter per second change the
kilometer to meter and the hour to seconds
→ 1 km = 1000 m
→ 1 hour = 3600 seconds
→ 
→ a = 1.11 m/sec².
The acceleration of the bus is 1.11 meters per second square to the direction of motion
Learn more:
You can learn more about the acceleration in brainly.com/question/6323625
#LearnwithBrainly
Answer:
0 Kelvin
Explanation:
Atoms in absolute temperature get approximatelly motionless since 0 Kelvin is -273 degrees Celcius. The kinetic energy of atoms/particles in matter has the possible lowest value ( almost zero), so that there is nothing colder than 0 Kelvin.
Newton's first law of motion.