At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
A. W
Explanation:
The wave that would be produced by the interaction of the two waves shown in the diagram is wave W.
There is no wave in the diagram W.
This type of interference is known as destructive interference.
- Destructive interference occurs when two waves out of phase comes together.
- In this way, they cancel out each other and are terminated.
- If the two waves are in phase, they will reinforce one another.
- When waves reinforce one another, a constructive interference has occurred.
learn more:
Color in soap bubbles brainly.com/question/8733443
#learnwithBrainly
Answer: Current electricity is a form of electricity in which charges constantly flow. Current electricity is dynamic while static electricity, as the name suggests, is static. How does current electricity work? The steady flow of electrons is termed as current electricity. Uses of Electricity in Household Starting from toaster to refrigerator, microwave, washing machine, dishwasher, electrical chimney, and many more appliances which are simple to use and made for the convenience of day to day activities use electricity to function.
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
67.8 turns needed by the secondary coil to run the bulb.
<u>Explanation</u>:
We know that,



For calculating number of turns

Given that,



We need to find the number of turns in the secondary winding
to run the bulb at 120W 
Firstly find the secondary voltage in the transformer use, 






Now, finding the number of turns in secondary coil. Use, 




The number of turns in the secondary winding are 67.8 turns.