The heat (energy) needed to raise the temperature of the water is given by

The wavelength of the radiation of the oven is

, so the energy of a single photon of this radiation is

So, the number of photons required to heat the water is the total energy absorbed by the water divided by the energy of a single photon:

photons
Answer:
the distance in meters traveled by a point outside the rim is 157.1 m
Explanation:
Given;
radius of the disk, r = 50 cm = 0.5 m
angular speed of the disk, ω = 100 rpm
time of motion, t = 30 s
The distance in meters traveled by a point outside the rim is calculated as follows;

Therefore, the distance in meters traveled by a point outside the rim is 157.1 m
Answer:29.627 m
Explanation:
Given
Initial velocity of life preserver(u) is 1.6 m/s
it takes 2.3 s to reach the water
using equation of motion
v=u+at

v=24.163 m/s
Let s be the height of life preserver



s=29.627 m
Thank you for posting
your question here at brainly. Feel free to ask more questions.
<span>The
best and most correct answer among the choices provided by the question is B.
Reaches a max height of
8.25 feet after 0.63 seconds</span>
.
<span><span>
</span><span>Hope my answer would be a great help for you. </span> </span>
<span> </span>
Answer:
3054.4 km/h
Explanation:
Using the conservation of momentum
momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor
initial momentum = 14900 M km/h
let v be the new speed of the motor so that the
new momentum = 4Mv and the new momentum of the module = M ( v + 94 km/h )
total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M
initial momentum = final momentum
14900 M km/h = 5 Mv + 93M
14900 km/h = 5v + 93
14900 - 93 = 5v
v = 2961.4 km/h
the speed of the module = 2961.4 + 93 = 3054.4 km/h