1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
3 years ago
12

Why do scientist use models to study atoms

Physics
1 answer:
Vedmedyk [2.9K]3 years ago
6 0
Scientists use models to study atoms, Because atoms are very tiny, and almost impossible to cut open and look inside.. And the center of an atom is the nucleus and that is ever smaller.
You might be interested in
A well lagged copper calorimeter of mas 120g contains 70g of water and 10g ice both at 0°C . Dry steam at 100°C is passed in unt
Lina20 [59]

Answer:

7.6 g

Explanation:

"Well lagged" means insulated, so there's no heat transfer between the calorimeter and the surroundings.

The heat gained by the copper, water, and ice = the heat lost by the steam

Heat gained by the copper:

q = mCΔT

q = (120 g) (0.40 J/g/K) (40°C − 0°C)

q = 1920 J

Heat gained by the water:

q = mCΔT

q = (70 g) (4.2 J/g/K) (40°C − 0°C)

q = 11760 J

Heat gained by the ice:

q = mL + mCΔT

q = (10 g) (320 J/g) + (10 g) (4.2 J/g/K) (40°C − 0°C)

q = 4880 J

Heat lost by the steam:

q = mL + mCΔT

q = m (2200 J/g) + m (4.2 J/g/K) (100°C − 40°C)

q = 2452 J/g m

Plugging the values into the equation:

1920 J + 11760 J + 4880 J = 2452 J/g m

18560 J = 2452 J/g m

m = 7.6 g

7 0
3 years ago
On the earth, when an astronaut throws a 0.250-kg stone vertically upward, it returns to his hand a time T later. On planet X he
Liula [17]

Answer:

correct is d) a ’= g / 2

Explanation:

For this exercise let's use the kinematics equations

On earth

      v = v₀ - a t

     a = (v₀- v) / T

On planet X

    v = v₀ - a' t’

    a ’= (v₀-v) / 2T

Let's substitute the land values ​​in plot X

     a’= a / 2

Now let's use Newton's second law

       W = ma

      m g = m a

      a = g

We substitute

      a ’= g / 2

So we see that on planet X the acceleration is half the acceleration of Earth's gravity

4 0
3 years ago
A projectile lands at the same height from which it was launched. which initial velocity will result
Serhud [2]

The required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ

First, we must understand that the component of the velocity along the vertical is due to maximum height achieved and expressed as usin θ.

The component of the velocity along the horizontal is due to the range of the object and is expressed as ucosθ.

If the <u>air resistance is ignored</u>, the velocity of the object will be constant throughout the flight and the initial velocity will be equal to the final velocity.

Hence the required initial velocity that will result if a projectile lands at the same height from which it was launched is V₀ = V cosθ

Learn more here; brainly.com/question/12870645

5 0
3 years ago
Suppose you exert 150 n on your refrigerator and push it across the kitchen floor at constant velocity. what friction force acts
Pachacha [2.7K]
Due that the velocity is constant that means that friction force is equal to the force exert by you, otherwise the refrigerator will accelerate or decelerate and in both cases velocity will not be constant.  
So then the friction force between refrigerator and floor is 150 Newtons.
8 0
3 years ago
Read 2 more answers
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
Other questions:
  • What distance does the car cover in the first 4.0 seconds of its motion?
    10·1 answer
  • How much energy becomes unavailable for work in an isothermal process at 440 k, if the entropy increase is 25 j/k?
    14·1 answer
  • Small rock substances that orbit the sun in groups is called
    7·1 answer
  • Electricity is one kind of​
    12·1 answer
  • The following statement is either true​ (in all​ cases) or false​ (for at least one​ example). If​ false, construct a specific e
    12·1 answer
  • Which statement about friction in a system is true?(1 point)
    7·1 answer
  • Pulling up on a rope, you lift a 4.25 kg bucket of water from a well with an acceleration of 1.80 m/s2 . What is the tension in
    14·1 answer
  • PLS HELP I NEED ANSWER HOMEWORK DUE SOON
    6·1 answer
  • Do allergen-free pillows cause fewer germs to grow?
    14·2 answers
  • 9.The force of gravity between two asteroids is 10,000 newtons (N).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!