Answer:
r= 3.2 cm
Explanation:
Given that
I= 8.7 A
B= 5.4 x 10⁻⁵ T
μo=1.25664 x 10⁻⁶
We know that magnetic filed in wire at a distance r given as


By putting the values

r=0.032 m
r= 3.2 cm
Answer:
3. both are true.
Explanation:
Energy increses with decrease in wavelenght.
For photoemission to occur, a threshold energy barrier must be broken.
Higher energy means more electrons will be emmited.
The electrons emmited will posses energy that is less than the incident energy by the value of the threshold energy.
So the higher the energy, the higher the energy possessed by the electrons.
In a gear train with two gears, the gear ratio is defined as follows
where

is the angular velocity of the input gear while

is the angular velocity of the output gear.
This can be rewritten as a function of the number of teeth of the gears. In fact, the angular velocity of a gear is inversely proportional to the radius r of the gear:

But the radius is proportional to the number of teeth N of the gear. Therefore we can rewrite the gear ratio also as
<h3><u>Answer;</u></h3>
Period = 1/17 seconds
<h3><u>Explanation;</u></h3>
- Wavelength is related to period by the expression:
<em>speed = wavelength / period
</em>
- If we are given the speed, then we can easily calculate the period at the wavelength of 20 m.
<em>Given the speed of sound wave as 340 m/s </em>
<em>Period = Wavelength/ speed</em>
<em> = 20 m/340 m/s</em>
<em> </em><u><em>= 1/17 seconds</em></u>