Answer:
Force is repulsive hence direction of force is away from wire
Explanation:
The first thing will be to draw a figure showing the condition,
Lets takeI attractive force as +ve and repulsive force as - ve and thereafter calculating net force on outer left wire due to other wires, net force comes out to be - ve which tells us that force is repulsive, hence direction of force is away from wire as shown in figure in the attachment.
let the mass of Venus is M then mass of Saturn is 100 M
similarly if the radius of Venus is R then the radius of Saturn is 10 R
now the force of gravity on a man of mass "m" at the surface of Venus is given by

now similarly the gravitational force on the man if he is at the surface of Saturn


so here if we divide the two forces

so here we can say
F1 = F2
so on both planets the gravitational force will be same
Answer:
Stress = 4.67 * 10^-7 N/m²
Explanation:
Young's modulus of the material = Stress/Strain
Given
Young's modulus = 228 x 10^9 Pa
Stress = 106,483 Pa
Required
Strain
From the formula;
Strain = Stress/Young modulus
Strain = 106,483 /228 x 10^9
Stress = 4.67 * 10^-7 N/m²
Answer:
Safety
Explanation:
Expressways are banked to resist centifugal action