<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
Answer:
E = 307667 N/C
Explanation:
Since the object's mass is 1 g, then its weight in newtons is 0.001 * 9.8 = 0.0098 N.
This weight should have the same magnitude of the vertical component of the tension T of the string (T * cos(37)) so we can find the magnitude of the tension T via:
0.0098 N = T * cos(37)
then T = 0.0098/cos(37) N = 0.01227 N
Knowing the tension's magnitude, we can find its horizontal component:
T * sin(37) = 0.007384 N
and now we can obtain the value of the electric field since we know the charge of the ball to be: -2.4 * 10^(-8) C:
0.007384 N = E * 2.4 * 10^(-8) C
Then E = 0.007384/2.4 * 10^(-8) N/C
E = 307667 N/C
Let's see: frequency of cellular phone waves (GSM phones) is (800-1900 MHz). If we look at the table of the electromagnetic spectrum, we can see that this range is contained within the frequencies of the microwaves, which include waves in the range 300 MHz-300 GHz.
So, summarizing, the correct answer is "microwaves".
Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation:
The best tree stand safety harness is the Hunter Safety System Hybrid Flex Safety Harness, with its awesome ElimiShield Scent Control Technology.
Moreover, These stands are designed to be attached directly to the tree. Hunters using a fixed or suspended stand must choose a method of climbing up and down from the platform. The safest and most used method is sectional ladders.
You can learn more about this at:
brainly.com/question/28335498#SPJ4