<span>There are pros and cons as to whether CCA-treated (pressure-treated) wood should be removed from existing structures, and both sides are subjective.
Some of the arguments for leaving it include:
*When burned, the wood can release dangerous, and sometimes, lethal fumes.
*If buried in a landfill, the chemicals can soak into the ground and eventually contaminate ground water.
*Removing it can expose people to arsenic
*It is costly to remove an existing infrastructure that may or may not be harming people
*Studies conducted within the past decade have determined structures containing CCA-treated wood pose no hazard
*Studies also concluded that children who played on CCA-treated playgrounds were exposed to arsenic levels lower than those that naturally occur in drinking water
Some of the arguments for removing it include:
*The EPA determined that some children could face higher cancer risks from exposure to CCA-treated wood
*If removed, it will need to be disposed of and, as discussed above, that creates another set of problems that could affect a community's health.
A possible solution is to leave existing CCA-treated wood in place but seek viable, safe alternatives for future structures.</span>
Answer:
The standard change in free energy for the reaction = - 437.5 kj/mole
Explanation:
The standard change in free energy for the reaction:
4 KClO₃ (s) → 3 KClO₄(s) + KCl(s)
Given that ΔGf(KClO3(s)) = -290.9 kJ/mol;
ΔGf(KClO4(s)) = -300.4 kJ/mol;
ΔGf(KCl(s)) = -409 kJ/mol
According to Hess's law
ΔGr (Free energy change of reaction)= ∑(Product free energy - reactant free energy)
⇒ ΔGr⁰ = {3 x (-300.4) + (-409)} - {3 x (- 290.9)}
= - 901.2 - 409 + 872.7
= - 437.5 kj/mole
0.2 m/s! keep in mind, speed= distance divided by time :D
Answer:
A
Explanation:
B describes a strong base, C just isn't true there are only 7 strong acids, D describes a weak acid
Answer:
2 electrons
Explanation:
There are five 3d orbitals, each of which can hold up to 2 electrons, for 10 total electrons. An orbital is described by the principle quantum number, n, the angular momentum quantum number, l, and the magnetic quantum number, ml.