Answer:Molarity
Explanation:M stand for molarity
C because the sodium (cation) bonds with the sulphate (anion) and then chloride (anion) and hydrogen (acting as a cation) bond together
Answer:
The volume of CO2 produced is 6.0 L (option D)
Explanation:
Step 1: Data given
Volume of oxygen = 3.0 L
Carbon monoxide = CO = in excess
Step 2: The balanced equation
2 CO (g) + O2 (g) → 2 CO2 (g)
Step 3: Calculate moles of O2
1 mol of gas at STP = 22.4 L
3.0 L = 0.134 moles
Step 3: Calculate moles of CO2
For 2 moles CO we need 1 mol of O2 to produce 2 moles of CO2
For 0.134 moles O2 we'll have 2*0.134 = 0.268 moles CO2
Step 4: Calculate volume of CO2
1 mol = 22.4 L
0.268 mol = 22.4 * 0.268 = 6.0 L
The volume of CO2 produced is 6.0 L
Answer:
The attractive force is negative and MgO has a higher melting point
Explanation:
From Couloumb's law:
Energy of interaction, E = k 
where q1 and q2 are the charges of the ions, k is Coulomb's constant and r is the distance between both ions, i.e the atomic radii of the ions.
If you look at Coulomb's law, you note that in the force is negative (because q1 is negative while q2 is positive).
In addition to that, the compounds MgO and NaF have similar combined ionic radii, then we can determine the melting point trend from the amount of energy gotten
The melting point of ionic compounds is determined by 1. charge on the ions 2. size of ions. while NaF has smaller charges (+1 and -1), MgO (+2 and -2) has larger charges and greater combined atomic radii. This implies that the compound with greater force would have a higher melting point.
Hence the compound MgO would have a higher melting point than NaF.