Answer:
hii samyy
Explanation:
nice killua profile pic :))
You can use the equation ΔS(surr)=q(surr)/T or ΔS(surr)=-q(rxn)/T.
the two equations are equal since we know that the energy the system (reactoin) puts out just goes into the surroundings.
(In other words q(surr)=-q(rxn))
Using the equation, <span>ΔS(surr)=-(-283kJ/298K)=0.9497kJ/K or 949.7J/K
This answer makes sense since the reaction is exothermic which means it released energy into the system which usually causes the entropy to increase.
I hope that helps.</span>
Answer:
I don't know what you're saying cuz give me the brainless answer please
The volume did not change, it remained at 20 ml
<h3>Further explanation</h3>
Given
20 ml a sample gas at STP(273 K, 1 atm)
T₂=546 K
P₂=2 atm
Required
The volume
Solution
Combined gas Law :

Input the value :

The volume does not change because the pressure and temperature are increased by the same ratio as the initial conditions (to 2x)