Answer:
pOH = 1.3, pH = 12.7
Explanation:
Since NaOH is a strong base, it will completely ionize; further, since it completely ionizes, our hydroxide concentration (a product of the ionization) will be the same as the given concentration of NaOH.
NaOH -> Na⁺ + OH⁻, [OH⁻] = 5.0 x 10^-2 M
pOH is the negative log of the hydroxide concentration, so plug our hydroxide concentration in:
pOH = -log[OH⁻] = -log[5.0 x 10^-2 M] = 1.3
Since pH + pOH = 14, we can plug in pOH and solve for pH:
pH + 1.3 = 14
pH = 14 - 1.3 = 12.7
Thus, our pOH = 1.3 and pH = 12.7.
Answer:
D. N₂O
Explanation:
Let's assume we have 100 g of the compound. That means it consists of 63.61 grams of nitrogen and 36.69 grams of oxygen.
Converting masses to moles:
63.61 g N × (1 mol N / 14.01 g N) = 4.540 mol N
36.69 g O × (1 mol O / 16.00 g O) = 2.293 mol O
Normalize by dividing by the smallest:
4.540 / 2.293 = 1.980 mol N
2.293 / 2.293 = 1.000 mol O
So there is approximately twice as many N atoms as O atoms. The empirical formula is therefore N₂O.
The word that best fits the underlined in the sentence is "free-to-rotate." The carbon atoms in their carbon bonds are free to rotate since alkanes do not have geometric isomers. They only have single bonds and the most common example of which are trans molecules.
The molar mass of sodium is 22.99 ㅤ ㅤ ㅤ 22.99 (28) = 643.72 mol now multiply by avogrados number to find the number of atoms. ㅤ ㅤ ㅤ 643.72 (6.022 x 10^23) = 3.88 x 10^26 number of atoms
Answer:
The answer is
<h2>720 Joules</h2>
Explanation:
The kinetic energy of a body can be found by using the formula
<h3>

</h3>
where
m is the mass
v is the velocity / speed
From the question
mass = 10 kg
velocity = 12 m/s
Substitute the values into the above formula and solve
That's
<h3>

</h3>
We have the final answer as
<h3>720 Joules</h3>
Hope this helps you