Answer:
Formula: Na2S2O3
we get solubility.
Divide the mass of the compound by the mass of the solvent and then multiply by 100 g to calculate the solubility in g/100g .
Solution given:
mass of sodium thiosulphate [m1]=25.5g
mass of water [m2]=40g
at temperature [t]=25°C
we have
<u>solubility in g/dm^3</u> :
- =

- =63.75g /litre=63.75g/dm³
<u>solubility in g/dm^3 :63.75g/dm³</u>
<u>n</u><u>o</u><u>w</u>
solubility of the solute in mol/dm^3=:63.75g/dm³/178=0.4 mol/dm³
Gravity increases as the mass of either object increases.
<h3>What is gravity?</h3>
Gravity is the force by which a planet or other body draws objects toward its centre. The force of gravity keeps all of the planets in orbit around the sun.
Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases.
Learn more about the gravity here:
brainly.com/question/4014727
#SPJ1
Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
Yes, S-blocks are metals except for helium and hydrogen. The S-block metals are shiny, silvery and relatively soft, although they can easily lose electrons. Helium and hydrogen have valence electrons but also lack some similar properties as the other metals.