That would be a depression..
I believe that what happens here is that when
those cells carrying those intercellular signals do no pass through the
connections, actually the signal is passed through or are transferred to adjacent
cells for signal transmission, hence the answer is:
<span>B</span>
Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.
Answer:
0.054 M
Explanation:
1 mol NaHSO4 -> 120 g
x ->13 g
x= 0.108 mol NaHSO4
M= mol solute/ L solution
M= 0.108 mol NaHSO4/ 2.00L
M= 0.054 M