CO2 is the emperical formula of carbon dioxide
Stoichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag
∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
Answer:
molarity= 0.238 mol L-
Explanation:
The idea here is that you need to use the fact that all the moles of sodium phosphate that you dissolve to make this solution will dissociate to produce sodium cations to calculate the concentration of the sodium cations.
Na 3 PO 4 (aq) → Na + (aq) + PO3−4 (aq)
Use the molar mass of sodium phosphate to calculate the number of moles of salt used to make this solution.
3.25g⋅1 mole N 3PO4 163.9g = 0.01983 moles Na3 PO 4
Now, notice that every
1 mole of sodium phosphate that you dissolve in water dissociates to produce
3bmoles of sodium cations in aqueous solution.