A. A pacemaker
Hope this helps!
Radioactive decay => C = Co { e ^ (- kt) |
Data:
Co = 2.00 mg
C = 0.25 mg
t = 4 hr 39 min
Time conversion: 4 hr 39 min = 4.65 hr
1) Replace the data in the equation to find k
C = Co { e ^ (-kt) } => C / Co = e ^ (-kt) => -kt = ln { C / Co} => kt = ln {Co / C}
=> k = ln {Co / C} / t = ln {2.00mg / 0.25mg} / 4.65 hr = 0.44719
2) Use C / Co = 1/2 to find the hallf-life
C / Co = e ^ (-kt) => -kt = ln (C / Co)
=> -kt = ln (1/2) => kt = ln(2) => t = ln (2) / k
t = ln(2) / 0.44719 = 1.55 hr.
Answer: 1.55 hr
Rutherford used gold for his scattering experiment because gold is the most malleable metal and he wanted the thinnest layer as possible. The goldsheet used was around 1000 atoms thick. Therefore, Rutherford selected a Gold foil in his alpha scatttering experiment.
Answer:
The electron pair geometry is Trigonal planar
Molecular geometry - Bent
Approximate bond angle - <120°
Explanation:
The valence shell electron pair repulsion theory enables us to predict the shapes of molecules based on the number of electron pairs present on the valence shell of the central atom and based on the hybridization state of the central atom.
sp2 hybridization corresponds to trigonal planar geometry. Let us recall that the presence of lone pairs causes a deviation of the molecular geometry from the expected geometry based on the number of electron pairs.
Hence, owing to one lone pair present, the observed molecular geometry is bent.
Answer:
Explanation:
Al (s) + CuSO4 (aq) → Cu (s) + Al2(SO4)3 (aq)
2Al (s) + 3CuSO4 (aq) → 3Cu (s) + Al2(SO4)3 (aq).
is the balance chemical equation