Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Yes, free electrons appear in balanced redox reaction equations. However, this is only true for half-reactions. This is because redox reactions primarily involve the transfer of electrons, which are better visualized if explicitly shown in the balanced reactions. In reduction reactions, electrons are placed on the left side of the equation. Oxidation reactions show electrons on the right side of the equation.
Explanation:
A half reaction is either the chemical reaction or reduction reaction part of an oxidoreduction reaction. A half reaction is obtained by considering the amendment in chemical reaction states of individual substances concerned within the oxidoreduction reaction. Half-reactions are usually used as a way of leveling oxidoreduction reactions.The half-reaction on the anode, wherever chemical reaction happens, is Zn(s) = Zn2+ (aq) + (2e-).
The metal loses 2 electrons to create Zn2+. The half-reaction on the cathode wherever reduction happens is Cu2+ (aq) + 2e- = Cu(s).
Here, the copper ions gain electrons and become solid copper.