Molar mass:
O2 = 31.99 g/mol
C8H18 = 144.22 g/mol
<span>2 C8H18(g) + 25 O2(g) = 16 CO2(g) + 18 H2O(g)
2 x 144.22 g --------------- 25 x 31.99 g
10.0 g ----------------------?? ( mass of O2)
10.0 x 25 x 31.99 / 2 x 144.22 =
7997.5 / 288.44 => 27.72 g of O2
hope this helps!
</span>
Answer:
A. The balloons will increase to twice their original volume.
Explanation:
Boyle's law states that the pressure exerted on a gas is inversely proportional to the volume occupied by the gas at constant temperature. That is:
P ∝ 1/V
P = k/V
PV = k (constant)
P = pressure, V = volume.

Let the initial pressure of the balloon be P, i.e.
, initial volume be V, i.e.
. The pressure is then halved, i.e.

Therefore the balloon volume will increase to twice their original volume.
I would say developed technologies which somehow were lost
like the stone age: the stone hammer, who used that afterwards in the roman empire era and stuff?
Ruler is the answer of this question
Answer:
C. 3.40 ppm, singlet
Explanation:
Given the information from the question .we have to select the best representation for represents the predicted approximate chemical shift and coupling for hydrogen(s). In this case, there is no neighboring hydrogen .Thus there won’t be any split .the best option answer is C. 3.40 ppm, singlet . Therefore the correct answer or option is C. 3.40 ppm, singlet.