Answer:
Moles of NO₂ = 0.158
Explanation:
SO 2 ( g ) + NO 2 ( g ) ⇄ SO 3 ( g ) + NO ( g )
According to the law of mass equation
= ![\frac{[SO_{3} ][NO]}{[SO_{2}][NO_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%20%5D%5BNO%5D%7D%7B%5BSO_%7B2%7D%5D%5BNO_%7B2%7D%20%20%5D%7D)
⇒ 3.10 =
At equilibrium [SO₃] = [NO]
⇒ [NO₂] = 
⇒ [NO₂] = 0.158
So. number of moles of NO₂ at equilibrium added = 0.158
Answer:
D. The sun's light helps plants grow
Explanation:
This is a scientific observation, because it is describing the structure of a living thing.
1.194 mol
(remember to use sig figs!)
Answer:
48 volts
Explanation:
Voltage (E) = Current (I) x Resistance (R), or E = IR.
The number of moles of gas lost is 0.0213 mol. It can be solved with the help of Ideal gas law.
<h3>What is Ideal law ?</h3>
According to this law, "the volume of a given amount of gas is directly proportional to the number on moles of gas, directly proportional to the temperature and inversely proportional to the pressure. i.e.
PV = nRT.
Where,
- p = pressure
- V = volume (1.75 L = 1.75 x 10⁻³ m³)
- T = absolute temperature
- n = number of moles
- R = gas constant, 8.314 J*(mol-K)
Therefore, the number of moles is
n = PV / RT
State 1 :
- T₁ = (25⁰ C = 25+273 = 298 K)
- p₁ = 225 kPa = 225 x 10³ N/m²
State 2 :
- T₂ = 10 C = 283 K
- p₂ = 185 kPa = 185 x 10³ N/m²
The loss in moles of gas from state 1 to state 2 is
Δn = V/R (P₁/T₁ - P₂/T₂ )
V/R = (1.75 x 10⁻³ m³)/(8.314 (N-m)/(mol-K) = 2.1049 x 10⁻⁴ (mol-m²-K)/N
p₁/T₁ = (225 x 10³)/298 = 755.0336 N/(m²-K)
p₂/T₂ = (185 x 10³)/283 = 653.7102 N/(m²-K)
Therefore,
Δn = (2.1049 x 10⁻⁴ (mol-m²-K)/N)*(755.0336 - 653.7102 N/(m²-K))
= 0.0213 mol
Hence, The number of moles of gas lost is 0.0213 mol.
Learn more about ideal gas here ;
https://brainly.in/question/641453
#SPJ1