1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
15

Cos(x)= sin(35) what does x =?

Mathematics
1 answer:
mylen [45]3 years ago
3 0
Here,

cos(x) = sin(35)
cos(x) = cos(90-55)
cos(x) = cos(55)
x = 55
You might be interested in
Find all the missing sides or angles in each right triangles
astra-53 [7]
In previous lessons, we used the parallel postulate to learn new theorems that enabled us to solve a variety of problems about parallel lines:

Parallel Postulate: Given: line l and a point P not on l. There is exactly one line through P that is parallel to l.

In this lesson we extend these results to learn about special line segments within triangles. For example, the following triangle contains such a configuration:

Triangle <span>△XYZ</span> is cut by <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> where A and B are midpoints of sides <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> respectively. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is called a midsegment of <span>△XYZ</span>. Note that <span>△XYZ</span> has other midsegments in addition to <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>. Can you see where they are in the figure above?

If we construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and construct <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> respectively, we have the following figure and see that segments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> are midsegments of <span>△XYZ</span>.

In this lesson we will investigate properties of these segments and solve a variety of problems.

Properties of midsegments within triangles

We start with a theorem that we will use to solve problems that involve midsegments of triangles.

Midsegment Theorem: The segment that joins the midpoints of a pair of sides of a triangle is:

<span>parallel to the third side. half as long as the third side. </span>

Proof of 1. We need to show that a midsegment is parallel to the third side. We will do this using the Parallel Postulate.

Consider the following triangle <span>△XYZ</span>. Construct the midpoint A of side <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Parallel Postulate, there is exactly one line though A that is parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>. Let’s say that it intersects side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at point B. We will show that B must be the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> and then we can conclude that <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

We must show that the line through A and parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> will intersect side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at its midpoint. If a parallel line cuts off congruent segments on one transversal, then it cuts off congruent segments on every transversal. This ensures that point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>.

Since <span><span><span>XA</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>AZ</span><span>¯¯¯¯¯¯¯</span></span></span>, we have <span><span><span>BZ</span><span>¯¯¯¯¯¯¯</span></span>≅<span><span>BY</span><span>¯¯¯¯¯¯¯¯</span></span></span>. Hence, by the definition of midpoint, point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is also parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

Proof of 2. We must show that <span>AB=<span>12</span>XY</span>.

In <span>△XYZ</span>, construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and midsegments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> as follows:

First note that <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> by part one of the theorem. Since <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> and <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span></span>, then <span>∠<span>XAC</span>≅∠<span>BCA</span></span> and <span>∠<span>CAB</span>≅∠<span>ACX</span></span> since alternate interior angles are congruent. In addition, <span><span><span>AC</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span></span>.

Hence, <span>△<span>AXC</span>≅△<span>CBA</span></span> by The ASA Congruence Postulate. <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>XC</span><span>¯¯¯¯¯¯¯¯</span></span></span> since corresponding parts of congruent triangles are congruent. Since C is the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>, we have <span>XC=CY</span> and <span>XY=XC+CY=XC+XC=2AB</span> by segment addition and substitution.

So, <span>2AB=XY</span> and <span>AB=<span>12</span>XY</span>. ⧫

Example 1

Use the Midsegment Theorem to solve for the lengths of the midsegments given in the following figure.

M, N and O are midpoints of the sides of the triangle with lengths as indicated. Use the Midsegment Theorem to find

<span><span> A. <span>MN</span>. </span><span> B. The perimeter of the triangle <span>△XYZ</span>. </span></span><span><span> A. Since O is a midpoint, we have <span>XO=5</span> and <span>XY=10</span>. By the theorem, we must have <span>MN=5</span>. </span><span> B. By the Midsegment Theorem, <span>OM=3</span> implies that <span>ZY=6</span>; similarly, <span>XZ=8</span>, and <span>XY=10</span>. Hence, the perimeter is <span>6+8+10=24.</span> </span></span>

We can also examine triangles where one or more of the sides are unknown.

Example 2

<span>Use the Midsegment Theorem to find the value of x in the following triangle having lengths as indicated and midsegment</span> <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Midsegment Theorem we have <span>2x−6=<span>12</span>(18)</span>. Solving for x, we have <span>x=<span>152</span></span>.

<span> Lesson Summary </span>
8 0
3 years ago
2. Find the perimeter and area of a square with a 7-ft side.
Rina8888 [55]

Answer:

Step-by-step explanation:

Perimeter 4L = 28

Area L^2 = 49

7 0
3 years ago
Christopher spends a total of $235.94. He purchases shoes for $80 as well as several sweaters. If each sweater was $25.99, how m
Xelga [282]

$235.94 - 80 = 155.94

155.94 ÷ 25.99 = 6

He bought 6 sweaters

6 0
3 years ago
According to forrest gump, "life is like a box of chocolates. you never know what you're gonna get." suppose a candy maker offer
kifflom [539]
14/20=0.7 or 70% are soft-centred. If we take two candies we have three possibilities associated with probabilities:
Both soft-centred: 0.7²=0.49 or 49%
Both hard-centred: 0.3²=0.09 or 9%
One of each: 2×0.3×0.7=0.42 or 42%. 49+9+42=100%. So these are all the possible outcomes.
6 0
3 years ago
The question is on the picture
Vadim26 [7]

<em>Answer,</em>

100,000,000 > 334,605,925

But, 100,000,000 is smaller that 334,605,952

So, It would be "100,000,000 < 334,605,925"



7 0
3 years ago
Other questions:
  • The compound inequality could represent which scenario? If Janie scores between 8.3 and 9.8 in her gymnastics performance, she q
    13·2 answers
  • An auto transport truck holds 12 cars. A car dealer plans to bring in 1,150 new cars in June and July. If an auto transport truc
    5·1 answer
  • Find all solutions of the equation in the interval [0,2π) sec(theta) +2=0
    9·1 answer
  • . Each U.S. coin is mapped to its monetary value. Tell whether this situation represents a function. Explain your reasoning. If
    5·1 answer
  • Which multiplication equations below can be used to help solve 480 ÷ 8? A. 8 × 50 = 400; 8 × 10 = 80 B. 4 × 100 = 400; 4 × 20 =
    6·1 answer
  • for a given recipe 12 cups of flour are mixed with 6 cups of sugar how many cups of sugar should be used if 20 cups of flour are
    8·1 answer
  • Solve for t.<br> -t = 9(t-10)<br> pls help
    11·1 answer
  • Can rectangular prism and a cube have the same volume
    13·1 answer
  • On a platter of chicken wings there are mild wings and hot wings. In a representative sample of 10 chicken​ wings, there are 5 m
    5·1 answer
  • Find the radius of both circles. Then describe the transformation/s needed to prove circle A
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!