Is the C because the mass in the compound is correct
Energy can be conserved by efficient energy use.
Answer: Option A
<u>Explanation:</u>
Energy can be transferred from one form to another, but it cannot be destroyed or created. So it can be conserved if efficiently used. Thus efficient usage of energy lead to conservation of energy. Due to conservation of energy, the forces can be renewable and non-renewable.
So, we should know how the input energy can be completely converted to another form of energy leading to efficient usage of energy without any loss. As if there is no loss, input energy will be equal to output energy leading to 100% efficiency.
Answer:
V₂ = 1.86 L
Explanation:
Given data:
Initial volume = 4.30 L
Initial pressure = 1 atm
Initial temperature = 273.15 K
Final temperature = 302 K
Final volume = ?
Final pressure = 2.56 atm
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁T₂
/T₁ P₂
V₂ = 1 atm ×4.30 L × 302 K / 273.15 K × 2.56 atm
V₂ = 1298.6 atm.L.K / 699.26 K.atm
V₂ = 1.86 L
Answer:
Oxygen is a simple molecular structure, where individual oxygen atoms are bonded to each other by strong covalent bonds. Hence, a low amount of energy is required to overcome these weak forces and oxygen has a low boiling point. Therefore, at room temperature, oxygen is a gas. Oxygen difluoride is a colorless gas, condensable to a pale yellow liquid, with a slightly irritating odor. It is the most stable of the compounds of fluorine and oxygen, which include O,F,, O,F, and 0,F2 but nevertheless it is a strong oxidizing and fluorinating agent. Oxygen Difluoride is a colorless gas or a yellowish-brown liquid with a foul odor. Just to finally link Joseph's answer to the question, oxygen difluoride will thus change from liquid to solid state when chilled from -220°c to -230°c. The boiling point of oxygen is -182.96 degrees Celsius (under 1 standard atmosphere). This means at temperatures below that point, oxygen is a solid or a liquid, and at temperatures above that point, oxygen is a gas. So at -183 degrees Celsius, oxygen is a liquid.
Explanation: