We call it a solid because it has the () and in s inside of it meaning solid
<span>Atoms move at different speeds depending on whether they are in liquids or solids </span><span>because the atoms or particles in solids are closely bonded while they are loosely bonded in liquids.
</span><span>
</span><span>
</span><span>The attractive forces between the particles are so high that they remain in fixed positions. The particles, then, cannot slip over the neighbors particles. They can only vibrate. That is why solids have definite form and volume.</span><span />
<span>That the particles in liquids are loosely bonded means that the attractive forces are less compared with solids. Then the partilces can move and pass each other. They are not in fixed arrangements any more. Yet the particles are attracted to each other, so they have definite volume, although they take the form of the vessel, and they can flow.
</span>
Answer: I believe the correct answer would be A.
Answer:
a compound,typically a crystalline one,in which water molecules are chemically bound to another compound or an element
Explanation:
Given -
- An organic compound gives H₂ gas with Na
- On treatment with alkaline iodine it gives yellow ppt.
- On oxidation with CrO₃/H⁺ forms an aldehyde (C₂H₄O)
To Find -
- Name the compound and write the reaction involved
Now,
Let A be the organic compound.
Then,
- A + Na → + H₂↑
- A + I₂ → CHI₃ (yellow ppt.)
- A + CrO₃ + H⁺ → C₂H₄O
Now,
Here we see that compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives aldehyde.
- Functional group of aldehyde = —CHO
And It forms only 2 Carbon aldehyde it means, It is Ethanal (CH₃CHO).
Compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives ethanal.
It means,
We know that 1° alcohol on oxidation gives aldehyde.
Here it gives 2 Carbon aldehyde.
It means,
Here 2 Carbon and 1° alcohol is used.
Now,
Its cleared that Compound A is Ethanol.
Reaction Involved -
- CH₃CH₂OH + Na → CH₃CH₂O⁻Na⁺ + H₂↑
- CH₃CH₂OH + I₂ + OH⁻ → CHI₃↓ + HCOO⁻ + HI + H₂O
- CH₃CH₂OH + CrO₃ + H⁺ → CH₃CHO