Answer:
67.5
Step-by-step explanation:
135/2=67.5
answer is $67.50
Answer:
500,000 pages
Step-by-step explanation:
1 / 5000 = 100 / x
x = 5000(100)
x = 500,000
Answer:
The first and third options are the examples of exponential functions.
Step-by-step explanation:
When a quantity is compounded after a certain interval of time at a certain rate, then we can assume that the situation can be represented by an exponential function.
In the first option: An event organizer finds each year's attendance for the past five years is about
of previous year's attendance.
So, here the total attendance is compounding every year by a factor
of previous year's attendance.
Again, in the third case: The total population is increasing by about 7.5% each year.
Hence, the population is compounded every year by 7.5% of the previous year's population.
Therefore, the first and third options are examples of exponential functions. (Answer)
Answer:
5.4
Explanation:
a²+b²=c²
2²+5²= 4+25
4+25=29
Now we have to square root the 29 which would make the answer 5.4
Answer:
D: {(-5, -4, 2, 2, 5)}
R: {(-6, 3, 4, 1, 5)}
The relation is NOT a function.
Step-by-step explanation:
By definition:
A relation is any set of ordered pairs, which can be thought of as (input, output).
A function is a <em><u>relation</u></em> in which no two ordered pairs have the same first component (domain/input/x value) and different second components (range/output/y value).
Looking at the given points in your graph, and in listing down the domain and range, we can infer that the relation is not a function because there is an x-value (2) that has two corresponding y-values: (2, 4) (2, 1).
Another way to tell if a given set of points in a graph represents a function by doing the "Vertical line test." The graph of an equation represents y as a function of x if and only if no vertical line intersects the graph more than once. Looking at the attached image, I drew a vertical line over points (2, 4) (2, 1). The vertical line intersects the two points, which fails the vertical line test. This is an indication that the given relation is not a function.