Well, first we must remember that

This is because


So then

A) Molar mass gold ( Au) = 196.96 g/mol
1 mole Au ----------- 196.96 g
? moles Au ---------- 35.12 g
35.12 x 1 / 196.96
= 0.178 moles of Au
_____________________________
b) 196.96 g --------------- 6.02x10²³ atoms
35.12 g ---------------- ( atoms ? )
35.12 x ( 6.02x10²³) / 196.96
2.114x10²⁵ / 196.96
= 1.07x10²³ atoms
_____________________________________________
Answer:
1. Robert Bunsen hence being called the bunsen burner. 2. William Kirchhoff
Explanation:
Ethers have a tetrahedral geometry i.e. oxygen is sp
3
hybridized. The C−O−C bond angle is 110
o
. Because of the greater electronegativity of O than C, the C−O bonds are slightly polar & are inclined to each other at an angle of 110
o
, resulting in a net dipole moment. This bond angle greater than that of tetrahedral bond angle of 109
o
28
′
. This is due to the fact that internal repulsion by the hydrocarbon part is greater than the external repulsion of the lone pair of oxygen.
Answer:
B, D, E, C, A
Explanation:
We have 5 blocks with their respective masses and volumes.
Block Mass Volume
A 65.14 kg 103.38 L
B 0.64 kg 100.64 L
C 4.08 kg 104.08 L
D 3.10 kg 103.10 L
E 3.53 kg 101.00 L
The density (ρ) is an intensive property resulting from dividing the mass (m) by the volume (V), that is, ρ = m / V
ρA = 65.14 kg / 103.38 L = 0.6301 kg/L
ρB = 0.64 kg / 100.64 L = 0.0064 kg/L
ρC = 4.08 kg / 104.08 L = 0.0392 kg/L
ρD = 3.10 kg / 103.10 L = 0.0301 kg/L
ρE = 3.53 kg / 101.00 L = 0.0350 kg/L
The order from least dense to most dense is B, D, E, C, A