Answer:
the planes wings are lifting at an angle to gravity so the plane isn't lifting as much against gravity when it banks. some of the wing lift is going into turning the plane. :) so it needs more lift to bank and stay up
Explanation:

Frequency, f, is how many cycles of an oscillation occur per second and is measured in cycles per second or hertz (Hz). The period of a wave, T, is the amount of time it takes a wave to vibrate one full cycle. These two terms are inversely proportional to each other: f = 1/T and T = 1/f.

Hope It Helps!
Answer:
A) 138.8g
B)73.97 cm/s
Explanation:
K = 15.5 Kn/m
A = 7 cm
N = 37 oscillations
tn = 20 seconds
A) In harmonic motion, we know that;
ω² = k/m and m = k/ω²
Also, angular frequency (ω) = 2π/T
Now, T is the time it takes to complete one oscillation.
So from the question, we can calculate T as;
T = 22/37.
Thus ;
ω = 2π/(22/37) = 10.5672
So,mass of ball (m) = k/ω² = 15.5/10.5672² = 0.1388kg or 138.8g
B) In simple harmonic motion, velocity is given as;
v(t) = vmax Sin (ωt + Φ)
It is from the derivative of;
v(t) = -Aω Sin (ωt + Φ)
So comparing the two equations of v(t), we can see that ;
vmax = Aω
Vmax = 7 x 10.5672 = 73.97 cm/s
1) The total mechanical energy of the rock is:

where U is the gravitational potential energy and K the kinetic energy.
Initially, the kinetic energy is zero (because the rock starts from rest, so its speed is zero), and the total mechanical energy of the rock is just gravitational potential energy. This is equal to

where

is the mass,

is the gravitational acceleration and

is the height.
Putting the numbers in, we find the potential energy

2) Just before hitting the ground, the potential energy U is zero (because now h=0), and all the potential energy of the rock converted into kinetic energy, which is equal to:

where v is the speed of the rock just before hitting the ground. Since the mechanical energy of the rock must be conserved, then the kinetic energy K before hitting the ground must be equal to the initial potential energy U of the rock:

3) For the work-energy theorem, the work W done by the gravitational force on the rock is equal to the variation of kinetic energy of the rock, which is:
Organic materials comes from living things while inorganic materials comes from non living things
Organic materials are those composed mainly of carbon they are derived from living things while inorganic materials are derived from non living things sucjh as rocks etc