The energy changes involved when a positive charge moves because of a nearby, negatively charged object because that is actually similar to when an object falls in a gravitational field, the potential energy of the object will turn in to a kinetic energy. thank you for this question.
Answer:
The length traveled by an object moving in any direction or even changing direction is called distance. The location of an object in a frame of reference is called position. For straight line motion, positions can be shown using a number line. The separation between original and final position is called displacement
Explanation:
good luck
<span>Circumference = 2 * pi * r
62.8318 = 2 * 3.14159 * 10 cm
62.8318 * 15 rotations / 42 seconds = 22.44 cm / second
22.44 cm / 100 cm per meter = .2244 m / s</span>
Answer:
Explanation:
The question relates to time of flight of a projectile .
Time of flight = 2 u sinθ / g
u is speed of projectile , θ is angle of projectile
= 2 x 48.5 sin42 / 9.8
= 6.6 seconds .
Maximum height attained
= u² sin²θ / g
= 48.5² sin²42 / 9.8
= 107.47 m .
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.