The third option is wrong
Solving this using the time, we know that range = horizontal velocity x time of flight
since
there are no horizontal forces acting on the ball, there are no
horizontal accelerations and the initial horizontal velocity of 36 cos
28 will be constant throughout. If we use the correct time of flight given the launch parameters, we have
range = 36 cos 28 x 3.44 s = 109.3 m
Answer:
E
Explanation:
all are proof Eeeeeeeeeee
Potential energy can be found using this formula:
PE= m * g * h
where:
PE= potential energy
m=mass
g=gravitational acceleration constant (9.8 m/s^2)
h= height
So your answer is height because you also use the gravitational constant.
You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!