(a) For the work-energy theorem, the work done to lift the can of paint is equal to the gravitational potential energy gained by it, therefore it is equal to

where m=3.4 kg is the mass of the can, g=9.81 m/s^2 is the gravitational acceleration and
is the variation of height. Substituting the numbers into the formula, we find

(b) In this case, the work done is zero. In fact, we know from its definition that the work done on an object is equal to the product between the force applied F and the displacement:

However, in this case there is no displacement, so d=0 and W=0, therefore the work done to hold the can stationary is zero.
(c) In this case, the work done is negative, because the work to lower the can back to the ground is done by the force of gravity, which pushes downward. Its value is given by the same formula used in part (a):

<span>f(x) = 5.05*sin(x*pi/12) + 5.15
First, you need to determine the period of the function. The period will be the time interval between identical points on the sinusoidal function. For this problem, the tide is rising and at 5.15 at midnight for two consecutive days. So the period is 24 hours. Over that 24 hour period, we want the parameter passed to sine to range from 0 to 2*pi. So the scale factor for x will be 2*pi/24 = pi/12 which is approximately 0.261799388. The next thing to note is the magnitude of the wave. That will simply be the difference between the maximum and minimum values. So 10.2 ft - 0.1 ft = 10.1 ft. And since the value of sine ranges from -1 to 1, we need to divide that magnitude by 2, so 10.1 ft / 2 = 5.05 ft.
So our function at this point looks like
f(x) = 5.05*sin(x*pi/12)
But the above function ranges in value from -5.05 to 5.05. So we need to add a bias to it in order to make the low value equal to 0.1. So 0.1 = X - 5.05, 0.1 + 5.05 = X, 5.15 = X. So our function now looks like:
f(x) = 5.05*sin(x*pi/12) + 5.15
The final thing that might have been needed would have been a phase correction. With this problem, we don't need a phase correction since at X = 0 (midnight), the value of X*pi/12 = 0, and the sine of 0 is 0, so the value of the equation is 5.15 which matches the given value of 5.15. But if the problem had been slightly different and the height of the tide at midnight has been something like 7 feet, then we would have had to calculate a phase shift value for the function and add that constant to the parameter being passed into sine, making the function look like:
f(x) = 5.05*sin(x*pi/12 + C) + 5.15
where
C = Phase correction offset.
But we don't need it for this problem, so the answer is:
f(x) = 5.05*sin(x*pi/12) + 5.15
Note: The above solution assumes that angles are being measured in radians. If you're using degrees, then instead of multiplying x by 2*pi/24 = pi/12, you need to multiply by 360/24 = 15 instead, giving f(x) = 5.05*sin(x*15) + 5.15</span>
According to Newton, an object will only accelerate if there is a net or unbalanced forceacting upon it. The presence of an unbalanced force will accelerate an object - changing its speed, its direction, or both its speed and direction.
R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
Answer:
D, using a spring scale to exert a force on the block. Measure the acceleration of the block and the applied force
Explanation:
For this you would use the net force equation acceleration=net force * mass however you will want to isolate mass so it would be acceleration/ net force to get mass. Then process of elimination comes to play.