Answer:
Drawing the triangle:
H / x = tan 52.2 = 1.29
H / (4.6 - x) = tan 28.8 = .550
H = 1.29 x
H = .55 * 4.6 - .55 x
1.84 x = 2.53 combining equations
x = 1.38
4.6 - 1.38 = 3.22
Total base of triangle = 1.38 + 3.22 = 4.6
H / x = tan 52,2 = 1.29
H = 1.29 * 1.38 = 1.78 height of triangle
Check:
1.78 / 3.22 = tan 28.9
This agrees with the given value of 28.8
This question involves the concepts of echo, ultrasonic images, ultrasonic sound waves.
The process of ultrasonic images uses the "echo" property of the sound waves.
Echo is the property of the sound wave by the virtue of which the sound wave reflects back to the source of the sound after hitting a surface or an object.
Ultrasonic images are obtained from inside organs of our body. This process involves the use of ultrasonic sound waves that have a frequency greater than 20,000 Hz. These sound waves are out of the range of audible sound by the human ear. When these ultrasonic sound waves are sent in form of pulses into the human body by the use of probes, they reflect back from the tissues of different organs to the probe. The probe then records the reflection properties of these sound waves and displays them in form of an image, known as ultrasonic images.
Learn more about echo here:
brainly.com/question/14335186?referrer=searchResults
The attached picture shows the process of ultrasonic imaging.
Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
Answer:
The Michelson-Morley was designed to detect the motion of the earth through the ether.
No such relation was found and the speed of light is assumed to be the same in all reference frames.
Answer:
light doesn't need a medium through which to travel because the speed of light is experimentally constant