Answer:
Relation between , molality and temperature is as follows.
T =
It is also known as depression between freezing point where, i is the Van't Hoff factor.
Let us assume that there is 100% dissociation. Hence, the value of i for these given species will be as follows.
i for = 3
i for glucose = 1
i for NaCl = 2
Depression in freezing point will have a negative sign. Therefore, d
depression in freezing point for the given species is as follows.
=
=
=
Therefore, we can conclude that given species are arranged according to their freezing point depression with the least depression first as follows.
Glucose < NaCl <
Explanation:
Answer:
Volume of acid, Va=250mL; Volume of quinine,Vb=20mL; Molarity of acid, Ma=0.05M.
Molar mass of acid= H2+S+O4= 2+32+(16X4)= 2+32+64=98g
Concentration of acid, Ca= Molar mass of acid/ Ma =98/0.05=1960g/mol
Explanation: To calculate concentration of quinine, Cb is as follow
Va*Ca=Vb*Cb
∴ Cb=Va*Ca/Vb =250*1960/20 =24500g/mol
The freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Using the equation,
Δ
= i
m
where:
Δ
= change in freezing point (unknown)
i = Van't Hoff factor
= freezing point depression constant
m = molal concentration of the solution
Molality is expressed as the number of moles of the solute per kilogram of the solvent.
Molal concentration is as follows;
MM KCl = 74.55 g/mol
molal concentration =
molal concentration = 0.1219m
Now, putting in the values to the equtaion Δ
= i
m we get,
Δ
= 2 × 1.86 × 0.1219
Δ
= 0.4536°C
So, Δ
of solution is,
Δ
= 0.00°C - 0.45°C
Δ
= - 0.45°C
Therefore,freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Learn more about freezing point here;
brainly.com/question/3121416
#SPJ4
Answer: Option (b) is the correct answer.
Explanation:
Kinetic energy is defined as the energy obtained by the molecules of an object due to their motion.
Also, it is known that kinetic energy is directly proportional to temperature.
Mathematically, K.E = 
where, T = temperature
Whereas potential energy is defined as the energy obtained by an object due to its position.
Mathematically, P.E = mgh
where, m = mass
g = acceleration due to gravity
h = height
Therefore, in the given curve when temperature remains constant then kinetic energy of molecules will also remain.
Hence, we can conclude that the segment QR represents an increase in the potential energy, but no change in the kinetic energy.