Answer:
Hi, even though this is really not a question or an answer to a question.
Explanation:
Do you know if any of this stuff involves 6th grade?
Answer:
Helum (He)g will escape faster
Explanation:
the phenomemenon can be explained by the Graham's law of diffusion.
Graham's law of difussion states that the rate of difussion is inversely proportional to the square root of the molecular mass,which means the gas with lower molecular mass will escape faster.
Helium gas has a molecular mass of 4 while Neon has a molecular mass of 10.
rate of diffusion of He/rate of difussion of Ne=√4/10=√0.4=0.63
It means He(g) will move 0.63 times faster than Ne(g) under the same condition
Also water H2O is made of H+ and OH- ions. so when an acidic substance is added to water the concentration of H+ ions increase.
Answer: The final pressure is 34.48kPa
Initial Pressure P1 = 55.16kPa
Initial Volume V1 = 0.500L
Final Pressure P2 = ?
Final Volume V2 = 0.800L
Boyle's law P1V1 = P2 V2
P2 = P1V1/V2
P2 = 55.16*0.5/0.8
P2 = 34.48kPa
Answer:
Lattice energy is <em>the energy required to convert a mole of ionic solid into its constituent ions in the gas phase</em>
Explanation:
Lattice energy is usually calculated by the Born-Haber cycle, from the affinity energies and sublimation ethalphy values. It is used as an estimation of the ionic energy strength between the ions in an ionic compound.
It is defined as the energy needed to broke 1 mol of a given ionic compound into its ions in the gaseous state. For example, the lattice energy for sodium chloride (NaCl) is the energy required to separate 1 mol of solid ionic compound (NaCl(s)) and produce the sodium and chlorine ions in the gas phase: Na⁺(g) and Cl⁻(g).